residual resistance
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Yixin Liu ◽  
Han Zhang ◽  
Xiaowen Han ◽  
Teng Wang ◽  
Lingling Wang ◽  
...  

Abstract High quality superconducting thin films are the basis for the application of superconducting devices. Here we report the fllm growth and superconducting properties of the Ta films. The films were grown by the pulsed laser deposition technique on the α-Al2O3 substrates. It is found that, with the increase of the fllm thickness from 20 nm to 61 nm, both the superconducting transition temperature Tc and residual resistance ratio RRR display an upward trend, while the upper critical field decreases monotonously in a wide temperature region. A clear anisotropic behavior is revealed by comparing the upper critical fields with two difierent orientations (H ⊥ film and H // film). The anisotropy parameter Γ is found to be as high as 20 for the sample with the thickness of 20 nm. The systematical evolution from two- to three-dimensional features for the superconductivity with the increase of fllm thickness is observed in the temperature dependent upper critical fleld data. Moreover, the vortex liquid region tends to expand with the increase of the fllm thickness.


2022 ◽  
Vol 12 (2) ◽  
pp. 546
Author(s):  
Peng Sha ◽  
Weimin Pan ◽  
Jiyuan Zhai ◽  
Zhenghui Mi ◽  
Song Jin ◽  
...  

Medium-temperature (mid-T) furnace baking was conducted at 650 MHz superconducting radio-frequency (SRF) cavity for circular electron positron collider (CEPC), which enhanced the cavity unloaded quality factor (Q0) significantly. In the vertical test (2.0 K), Q0 of 650 MHz cavity reached 6.4 × 1010 at 30 MV/m, which is remarkably high at this unexplored frequency. Additionally, the cavity quenched at 31.2 MV/m finally. There was no anti-Q-slope behavior after mid-T furnace baking, which is characteristic of 1.3 GHz cavities. The microwave surface resistance (RS) was also studied, which indicated both very low Bardeen–Cooper–Schrieffer (BCS) and residual resistance. The recipe of cavity process in this paper is simplified and easy to duplicate, which may benefit the SRF community.


Author(s):  
Rui Niu ◽  
Wenka Zhu

Abstract Magnetoresistance (MR) is a characteristic that the resistance of a substance changes with the external magnetic field, reflecting various physical origins and microstructures of the substance. A large MR, namely a huge response to a low external field, has always been a useful functional feature in industrial technology and a core goal pursued by physicists and materials scientists. Conventional large MR materials are mainly manganites, whose colossal MR (CMR) can be as high as -90%. The dominant mechanism is attributed to spin configuration aligned by the external field, which reduces magnetic scattering and thus resistance. In recent years, some new systems have shown an extremely large unsaturated MR (XMR). Unlike ordinary metals, the positive MR of these systems can reach 103-108% and is persistent under super high magnetic fields. The XMR materials are mainly metals or semimetals, distributed in high-mobility topological or non-topological systems, and some are magnetic, which suggests a wide range of application scenarios. Various mechanisms have been proposed for the potential physical origin of XMR, including electron-hole compensation, steep band, ultrahigh mobility, high residual resistance ratio, topological fermions, etc. It turns out that some mechanisms play a leading role in certain systems, while more are far from clearly defined. In addition, the researches on XMR are largely overlapped or closely correlated with other recently rising physics and materials researches, such as topological matters and two-dimensional (2D) materials, which makes elucidating the mechanism of XMR even more important. Moreover, the disclosed novel properties will lay a broad and solid foundation for the design and development of functional devices. In this review, we will discuss several aspects in the following order: (I) Introduction, (II) XMR materials and classification, (III) Proposed mechanisms for XMR, (IV) Correlation with other systems (featured), and (V) Conclusions and outlook.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 427
Author(s):  
George Dedkov

This paper presents the results of calculating the van der Waals friction force (dissipative fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures close to 1 K. The stopping tangential force arises between moving plates along with the usual Casimir force of attraction, which has been routinely measured with high precision over the past two decades. At room temperatures, the former force is 10 orders of magnitude less than the latter, but at temperatures T<50 K, friction increases sharply. The calculations have been carried out in the framework of the Levin-Polevoi-Rytov fluctuation electromagnetic theory. For metallic plates with perfect crystal lattices and without defects, van der Waals friction force is shown to increase with decreasing temperature as T-4. In the presence of residual resistance ρ0 of the metal, a plateau is formed on the temperature dependence of the friction force at T→0 with a height proportional to ρ0-0.8. Another important finding is the weak force-distance dependence ~a-q (with q<1). The absolute values of the friction forces are achievable for measurements in AFM-based experiments.


2021 ◽  
Author(s):  
Haofeng Song ◽  
Pinaki Ghosh ◽  
Kishore Mohanty

Abstract Polymer transport and retention affect oil recovery and economic feasibility of EOR processes. Most studies on polymer transport have focused on sandstones with permeabilities (k) higher than 200 mD. A limited number of studies were conducted in carbonates with k less than 100 mD and very few in the presence of residual oil. In this work, transport of four polymers with different molecular weights (MW) and functional groups are studied in Edwards Yellow outcrop cores (k&lt;50 mD) with and without residual oil saturation (Sor). The retention of polymers was estimated by both the material balance method and the double-bank method. The polymer concentration was measured by both the total organic carbon (TOC) analyzer and the capillary tube rheology. Partially hydrolyzed acrylamide (HPAM) polymers exhibited high retention (&gt; 150 μg/g), inaccessible pore volume (IPV) greater than 7%, and high residual resistance factor (&gt;9). A sulfonated polyacrylamide (AN132), showed low retentions (&lt; 20 μg/g) and low IPV. The residual resistance factor (RRF) of AN132 in the water-saturated rock was less than 2, indicating little blocking of pore throats in these tight rocks. The retention and RRF of the AN132 polymer increased in the presence of residual oil saturation due to partial blocking of the smaller pore throats available for polymer propagation in an oil-wet core.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Anjali Premkumar ◽  
Conan Weiland ◽  
Sooyeon Hwang ◽  
Berthold Jäck ◽  
Alexander P. M. Place ◽  
...  

AbstractDespite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we combine measurements of transmon qubit relaxation times (T1) with spectroscopy and microscopy of the polycrystalline niobium films used in qubit fabrication. By comparing films deposited using three different techniques, we reveal correlations between T1 and intrinsic film properties such as grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Qubit and resonator measurements show signatures of two-level system defects, which we propose to be hosted in the grain boundaries and surface oxides. We also show that the residual resistance ratio of the polycrystalline niobium films can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 816
Author(s):  
Rosa Lo Frano

The impact of an aircraft is widely known to be one of the worst events that can occur during the operation of a plant (classified for this reason as beyond design). This can become much more catastrophic and lead to the loss of strength of/collapse of the structures when it occurs in the presence of ageing (degradation and alteration) materials. Therefore, since the performance of all plant components may be affected by ageing, there is a need to evaluate the effect that aged components have on system performance and plant safety. This study addresses the numerical simulation of an aged Nuclear Power Plant (NPP) subjected to a military aircraft impact. The effects of impact velocity, direction, and location were investigated together with the more unfavorable conditions to be expected for the plant. The modelling method was also validated based on the results obtained from the experiments of Sugano et al., 1993. Non-linear analyses by means of finite element (FE) MARC code allowed us to simulate the performance of the reinforced concrete containment building and its impact on plant availability and reliability. The results showed that ageing increases a plant’s propensity to suffer damage. The damage at the impact area was confirmed to be dependent on the type of aircraft involved and the target wall thickness. The greater the degradation of the materials, the lower the residual resistance capacity, and the greater the risk of wall perforation.


2021 ◽  
Vol 14 (04) ◽  
pp. 239-258
Author(s):  
M. F. Zampieri ◽  
C. C. Quispe ◽  
R. B. Z. L. Moreno

Polymer flooding has been widely used for enhancing oil recovery, due to the growing number of successful applications around the world. The process aims to increase water viscosity and, thus, decrease the water/oil mobility ratio, thereby improving sweep efficiency. The understanding of the physical mechanisms involved in this enhanced oil recovery process allows us to forecast the application potential of polymer flooding. This work aims to assess physical phenomena associated with heavy oil recovery through polymer flooding using 1D small-scale simulation models. We evaluate the influence of different levels of adsorption, accessible pore volume, residual resistance factor, and polymer concentration on the results and compare their magnitude effect on the results. The models used in this study were built using data from previous lab work and literature. For each one of the mentioned parameters, this work compares the histories of water cut, cumulative water-oil ratio, average pressure, and oil recovery factor. Additionally, water saturation, water viscosity, and water mobility profile were determined for specific periods of the flooding process. The sensitivity analyses showed that high levels of adsorption influence the polymer loss of the advance front, delaying oil recovery. Low values of accessible pore volume lead to a slightly faster polymer breakthrough and oil recovery anticipation. A high residual resistance factor increases the average pressure and improves oil recovery. Higher polymer concentration enhances the displacement efficiency and enhances the recovery factor.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
José Emidio Alexandrino Bezerra ◽  
Antônio Eduardo Bezerra Cabral ◽  
Angel Oshiro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document