Large-time solution of a nonlinear diffusion equation

In this paper we consider the way in which the solution to a class of initial - boundary-value problems for the plane nonlinear diffusion equation approaches the similarity form as t-> oo. The problem we solve is chosen for two main reasons: firstly the equation above is of widespread use in modelling physical situations and secondly it provides a tractable but significant example of a free boundary problem.

Author(s):  
Yuri Luchko

AbstractIn this paper, some initial-boundary-value problems for the time-fractional diffusion equation are first considered in open bounded n-dimensional domains. In particular, the maximum principle well-known for the PDEs of elliptic and parabolic types is extended for the time-fractional diffusion equation. In its turn, the maximum principle is used to show the uniqueness of solution to the initial-boundary-value problems for the time-fractional diffusion equation. The generalized solution in the sense of Vladimirov is then constructed in form of a Fourier series with respect to the eigenfunctions of a certain Sturm-Liouville eigenvalue problem. For the onedimensional time-fractional diffusion equation $$(D_t^\alpha u)(t) = \frac{\partial } {{\partial x}}\left( {p(x)\frac{{\partial u}} {{\partial x}}} \right) - q(x)u + F(x,t), x \in (0,l), t \in (0,T)$$ the generalized solution to the initial-boundary-value problem with Dirichlet boundary conditions is shown to be a solution in the classical sense. Properties of this solution are investigated including its smoothness and asymptotics for some special cases of the source function.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuki Kaneko ◽  
Hiroshi Matsuzawa ◽  
Yoshio Yamada

<p style='text-indent:20px;'>We study a free boundary problem of a reaction-diffusion equation <inline-formula><tex-math id="M1">\begin{document}$ u_t = \Delta u+f(u) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ t&gt;0,\ |x|&lt;h(t) $\end{document}</tex-math></inline-formula> under a radially symmetric environment in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>. The reaction term <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> has positive bistable nonlinearity, which satisfies <inline-formula><tex-math id="M5">\begin{document}$ f(0) = 0 $\end{document}</tex-math></inline-formula> and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface <inline-formula><tex-math id="M6">\begin{document}$ \{x\in \mathbb{R}^N:\ |x| = h(t)\} $\end{document}</tex-math></inline-formula>, which expands to infinity as <inline-formula><tex-math id="M7">\begin{document}$ t\to\infty $\end{document}</tex-math></inline-formula>, even when the corresponding semi-wave problem does not admit solutions.</p>


Sign in / Sign up

Export Citation Format

Share Document