scholarly journals Field statistics in nonlinear composites. I. Theory

Author(s):  
Martín I Idiart ◽  
Pedro Ponte Castañeda

This work presents a means for extracting the statistics of the local fields in nonlinear composites from the effective potential of suitably perturbed composites. The idea is to introduce a parameter in the local potentials, generally a tensor, such that differentiation of the corresponding effective potential with respect to the parameter yields the volume average of the desired quantity. In particular, this provides a generalization to the nonlinear case of well-known formulas in the context of linear composites, which express phase averages and second moments of the local fields in terms of derivatives of the effective potential. Such expressions are useful since they allow the generation of estimates for the field statistics in nonlinear composites, directly from homogenization estimates for appropriately defined effective potentials. Here, use is made of these expressions in the context of the ‘variational’, ‘tangent second-order’ and ‘second-order’ homogenization methods, to obtain rigorous estimates for the first and second moments of the fields in nonlinear composites. While the variational estimates for these quantities are found to be identical to those proposed in previous works, the tangent second-order and second-order estimates are found be different. In particular, the new estimates for the first moments given in this work are found to be entirely consistent with the corresponding estimates for the macroscopic behaviour. Sample results for two-phase, power-law composites are provided in part II of this work.

Author(s):  
Martín I Idiart ◽  
Pedro Ponte Castañeda

Part I of this work provided a methodology for extracting the statistics of the local fields in nonlinear composites, from the effective potential of suitably perturbed composites. In particular, exact relations were given for the first and even moments of the fields in each constituent phase. In this part, use is made of these exact relations in the context of the ‘variational’, ‘tangent second-order’ and ‘second-order’ nonlinear homogenization methods to generate estimates for the phase averages and second moments of the fields for two-phase, power-law composites with isotropic and transversely isotropic microstructures. The accuracy of these estimates is assessed by confronting them against corresponding exact results for sequentially laminated composites. Among the nonlinear homogenization estimates considered in this work, the second-order estimates are found to be, in general, the most accurate, especially for large heterogeneity contrast and nonlinearity. Thus, these estimates are able to capture, for example, the strong anisotropy in the strain fluctuations that can develop inside nonlinear porous and rigidly reinforced composites.


2011 ◽  
Vol 10 (5) ◽  
pp. 1333-1362 ◽  
Author(s):  
Zhijun Tan ◽  
K. M. Lim ◽  
B. C. Khoo

AbstractIn this paper, a novel implementation of immersed interface method combined with Stokes solver on a MAC staggered grid for solving the steady two-fluid Stokes equations with interfaces. The velocity components along the interface are introduced as two augmented variables and the resulting augmented equation is then solved by the GMRES method. The augmented variables and /or the forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines and are then applied to the fluid through the jump conditions. The Stokes equations are discretized on a staggered Cartesian grid via a second order finite difference method and solved by the conjugate gradient Uzawa-type method. The numerical results show that the overall scheme is second order accurate. The major advantages of the present IIM-Stokes solver are the efficiency and flexibility in terms of types of fluid flow and different boundary conditions. The proposed method avoids solution of the pressure Poisson equation, and comparisons are made to show the advantages of time savings by the present method. The generalized two-phase Stokes solver with correction terms has also been applied to incompressible two-phase Navier-Stokes flow.


1984 ◽  
Vol 49 (1) ◽  
pp. 110-121 ◽  
Author(s):  
Jiří Křepelka ◽  
Drahuše Vlčková ◽  
Milan Mělka

Alkylation of derivatives of 4-aryl-1-naphthols (I-V) by 2,3-epoxypropyl chloride in methanolic sodium hydroxide gave epoxy derivatives VI, VIII, IX, XI and XII, apart from products of cleavage of the oxirane ring, VII and X. Analogous alkylation of compounds I, IV and V by 2-(N,N-diethylamino)ethyl chloride hydrochloride in a two-phase medium afforded basic ethers XIII to XV. The cleavage of the oxirane ring in compound VI by the action of primary and secondary amines, piperidine and substituted piperazines led to compounds XVI-XXIV. Reaction of thionyl chloride with compounds XXI, XXII and XXIV gave chloro derivatives XXV-XXVII.Exposure of compound XXII to 4-methylbenzenesulfonyl chloride produced compound XXVIII, retaining the secondary alcoholic group. In an antineoplastic screening in vivo none of the compounds prepared had an appreciable activity. Compound XVII, being an analogue of propranolol, was used in the test of isoproterenolic tachycardia, and showed a beta-lytic effect comparable with that of propranol.


2016 ◽  
Vol 40 (9) ◽  
pp. 3221-3229 ◽  
Author(s):  
Ransés Alfonso-Rodríguez ◽  
Julián Bravo-Castillero ◽  
Leslie D. Pérez-Fernández
Keyword(s):  

Author(s):  
V. Calisti ◽  
A. Lebée ◽  
A. A. Novotny ◽  
J. Sokolowski

AbstractThe multiscale elasticity model of solids with singular geometrical perturbations of microstructure is considered for the purposes, e.g., of optimum design. The homogenized linear elasticity tensors of first and second orders are considered in the framework of periodic Sobolev spaces. In particular, the sensitivity analysis of second order homogenized elasticity tensor to topological microstructural changes is performed. The derivation of the proposed sensitivities relies on the concept of topological derivative applied within a multiscale constitutive model. The microstructure is topologically perturbed by the nucleation of a small circular inclusion that allows for deriving the sensitivity in its closed form with the help of appropriate adjoint states. The resulting topological derivative is given by a sixth order tensor field over the microstructural domain, which measures how the second order homogenized elasticity tensor changes when a small circular inclusion is introduced at the microscopic level. As a result, the topological derivatives of functionals for multiscale models can be obtained and used in numerical methods of shape and topology optimization of microstructures, including synthesis and optimal design of metamaterials by taking into account the second order mechanical effects. The analysis is performed in two spatial dimensions however the results are valid in three spatial dimensions as well.


1986 ◽  
Vol 16 (2) ◽  
pp. 221-224 ◽  
Author(s):  
Donald E. Carlson ◽  
Anne Hoger

Sign in / Sign up

Export Citation Format

Share Document