scholarly journals Folding behaviour of Tachi–Miura polyhedron bellows

Author(s):  
Hiromi Yasuda ◽  
Thu Yein ◽  
Tomohiro Tachi ◽  
Koryo Miura ◽  
Minoru Taya

In this paper, we examine the folding behaviour of Tachi–Miura polyhedron (TMP) bellows made of paper, which is known as a rigid-foldable structure, and construct a theoretical model to predict the mechanical energy associated with the compression of TMP bellows, which is compared with the experimentally measured energy, resulting in the gap between the mechanical work by the compression force and the bending energy distributed along all the crease lines. The extended Hamilton's principle is applied to explain the gap which is considered to be energy dissipation in the mechanical behaviour of TMP bellows.

1991 ◽  
Vol 56 (9) ◽  
pp. 1856-1867 ◽  
Author(s):  
Zdzisław Jaworski ◽  
Ivan Fořt

Mechanical energy dissipation was investigated in a cylindrical, flat bottomed vessel with four radial baffles and the pitched blade turbine impeller of varied size. This study was based upon the experimental data on the hydrodynamics of the turbulent flow of water in an agitated vessel. They were gained by means of the three-holes Pitot tube technique for three impeller-to-vessel diameter ratio d/D = 1/3, 1/4 and 1/5. The experimental results obtained for two levels below and two levels above the impeller were used in the present study. Radial profiles of the mean velocity components, static and total pressures were presented for one of the levels. Local contribution to the axial transport of the agitated charge and energy was presented. Using the assumption of the axial symmetry of the flow field the volumetric flow rates were determined for the four horizontal cross-sections. Regions of positive and negative values of the total pressure of the liquid were indicated. Energy dissipation rates in various regions of the agitated vessel were estimated in the range from 0.2 to 6.0 of the average value for the whole vessel. Hydraulic impeller efficiency amounting to about 68% was obtained. The mechanical energy transferred by the impellers is dissipated in the following ways: 54% in the space below the impeller, 32% in the impeller region, 14% in the remaining part of the agitated liquid.


2008 ◽  
Vol 40 (Supplement) ◽  
pp. S165 ◽  
Author(s):  
Robert Reid ◽  
Matthias Gilgien ◽  
Tron Moger ◽  
Håvard Tjørhom ◽  
Per Haugen ◽  
...  

2013 ◽  
Vol 278-280 ◽  
pp. 629-632
Author(s):  
Li Peng Yuan ◽  
Amur Al Yahmedi ◽  
Li Ming Yuan

Here, we consider the walking gait patterns. And we presented a hybrid model for a passive 2D walker with knees and point feet. The dynamics of this model were fully derived analytically. We have also proposed virtual coupling control laws. The control strategy is formed by taking into account the features of mechanical energy dissipation and restoration. And we also prove some walking rules maybe true.


Author(s):  
C F Lugora ◽  
A N Bramley

In this series of papers, a theoretical model based on the upper bound elemental technique is presented for prediction of forging load and metal flow in three-dimensional closed-die forging processes. Three basic elements are introduced in order to partition a forging into simple elementary regions. An optimum velocity distribution within the forging is obtained by minimizing the total rate of energy dissipation using a simplex optimizing procedure. Applications of the proposed model are discussed in Part 2.


Author(s):  
Isabelle Beurroies ◽  
Damien Presle ◽  
Julien Rodriguez ◽  
Renaud Denoyel

2019 ◽  
Vol 16 (1) ◽  
pp. 113-119
Author(s):  
Abdul Rauf ◽  
Syed Ismail Ahmad

The energy dissipated properties of normal and decalcified femur, rib and scapula bones of animals ox and camel have been studied by uniform bending technique. A hysteresis curve has been observed between the elevation in bone and load applied. It is observed that the energy dissipated as calculated from the hysteresis loop for rib is more than that of femur and scapula of ox and camel. It has been observed that the dissipation of energy in normal bone is less than that of decalcified bone under the same condition of applied load. The highest energy dissipation was observed in case of rib bone of camel compared to that of any other bone, rib of camel and scapula of ox dissipates maximum energy than femur bones. The study suggests that this technique is simple, elegant and inexpensive besides accurate in determining viscoelastic properties of bone.


2021 ◽  
pp. 116511
Author(s):  
Frédéric Boyer ◽  
Vincent Lebastard ◽  
Fabien Candelier ◽  
Federico Renda

1971 ◽  
Vol 38 (3) ◽  
pp. 674-682 ◽  
Author(s):  
J. P. Vanyo ◽  
P. W. Likins

Methods are described for the experimental measurement and analytical estimation of the losses of mechanical energy in a spinning and precessing spherical cavity filled with fluid. Test results are presented and correlated with analytical estimates based on two different mathematical models of the system. The experimental apparatus is a gimbaled mechanism which constrains a rigid body with a spherical cavity to spin about an axis through the cavity center at a constant rate ψ˙, while the spin axis cones about an inertially fixed axis at a constant rate φ˙ with a constant conical half angle θ. Measurements of current required by motors which maintain the constancy of ψ˙ and φ˙ provide a measure of the energy losses in the fluid in the steady state, after suitable dry test calibrations. Experimental results are presented for a 22-cm-dia cavity containing fluids of kinematic viscosities of 1 and 20 centistokes, with θ ranging from 5–30 deg, ψ˙ ranging from 60–1000 rpm, and φ˙ ranging from −400 to +600 rpm. Analytical approximations are developed on the basis of (a) a variation of the oscillating flat-plate solution, and (b) a rigid interior sphere of fluid idealization. The rigid sphere method gives energy dissipation rates that are generally valid over most of the important range of parameters, while the oscillating surface solution is generally an order of magnitude too low in its predictions of energy dissipation.


Sign in / Sign up

Export Citation Format

Share Document