scholarly journals A systematic path to non-Markovian dynamics: new response probability density function evolution equations under Gaussian coloured noise excitation

Author(s):  
K. I. Mamis ◽  
G. A. Athanassoulis ◽  
Z. G. Kapelonis

Determining evolution equations governing the probability density function (pdf) of non-Markovian responses to random differential equations (RDEs) excited by coloured noise, is an important issue arising in various problems of stochastic dynamics, advanced statistical physics and uncertainty quantification of macroscopic systems. In the present work, such equations are derived for a scalar, nonlinear RDE under additive coloured Gaussian noise excitation, through the stochastic Liouville equation. The latter is an exact, yet non-closed equation, involving averages over the time history of the non-Markovian response. This non-locality is treated by applying an extension of the Novikov–Furutsu theorem and a novel approximation, employing a stochastic Volterra–Taylor functional expansion around instantaneous response moments, leading to efficient, closed, approximate equations for the response pdf. These equations retain a tractable amount of non-locality and nonlinearity, and they are valid in both the transient and long-time regimes for any correlation function of the excitation. Also, they include as special cases various existing relevant models, and generalize Hänggi's ansatz in a rational way. Numerical results for a bistable nonlinear RDE confirm the accuracy and the efficiency of the new equations. Extension to the multidimensional case (systems of RDEs) is feasible, yet laborious.

2014 ◽  
Vol 10 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Jagdev Singh ◽  
Devendra Kumar

Abstract In this paper, we obtain the distribution of mixed sum of two independent random variables with different probability density functions. One with probability density function defined in finite range and the other with probability density function defined in infinite range and associated with product of Srivastava's polynomials and H-function. We use the Laplace transform and its inverse to obtain our main result. The result obtained here is quite general in nature and is capable of yielding a large number of corresponding new and known results merely by specializing the parameters involved therein. To illustrate, some special cases of our main result are also given.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1909
Author(s):  
Ping Zhao ◽  
Xingyu Zhao ◽  
Chun Zhao

The literature has shown that the performance of the de-noising algorithm was greatly influenced by the dependencies between wavelet coefficients. In this paper, the bivariate probability density function (PDF) was proposed which was symmetric, and the dependencies between the coefficients were considered. The bivariate Cauchy distribution and the bivariate Student’s distribution are special cases of the proposed bivariate PDF. One of the parameters in the probability density function gave the estimation method, and the other parameter can take any real number greater than 2. The algorithm adopted a maximum a posteriori estimator employing the dual-tree complex wavelet transform (DTCWT). Compared with the existing best results, the method is faster and more efficient than the previous numerical integration techniques. The bivariate shrinkage function of the proposed algorithm can be expressed explicitly. The proposed method is simple to implement.


Sign in / Sign up

Export Citation Format

Share Document