scholarly journals The acidity of muscle during maintained contraction

In 1913, I described a method for recording changes in hydrogen-ion concentrations in tissues, by means of a manganese dioxide electrode in combination with a calomel electrode (1). By this method it was shown that the acidity of muscle probably increased at the same time as, or slightly before, the tension increased, and that the acidity decreased as the muscle relaxed (2). In a paper, which appeared as this note was being prepared for publication, Ritchie states that he has been unable to detect a variation in acidity by the use of manganese dioxide electrodes. I am inclined to think that his failure is due to the injury to the muscles on insertion of wires into its substance. In my own experiments the wires rest on the surface of the muscle.

1919 ◽  
Vol 30 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Frederick T. Lord ◽  
Robert N. Nye

1. In the growth and death of the pneumococcus in fluid media containing 1 per cent glucose the production of acid is the most important bactericidal factor. 2. 1 per cent glucose bouillon cultures of the pneumococcus allowed to grow and die out usually reach a final acidity of a pH of about 5.1. 3. At a hydrogen ion concentration of about 5.1 or higher, the pneumococcus does not survive longer than a few hours. 4. In hydrogen ion concentrations of about 6.8 to 7.4 the pneumococcus may live for at least many days. 5. In the intervening hydrogen ion concentrations, between 6.8 and 5.1, the pneumococcus is usually killed with a rapidity which bears a direct relation to the hydrogen ion concentration; i.e., the greater the acidity the more rapid is the death. 6. Cloudy suspensions of washed pneumococci in hydrogen ion concentrations varying from 8.0 to 4.0 show, after incubation, dissolution of organisms in lower hydrogen ion concentrations than about 5.0. This dissolution is most marked at about 5.0 to 6.0. Some dissolution also takes place toward the more alkaline end of the scale. No dissolution occurs at the most acid end of the scale.


1953 ◽  
Vol 97 (4) ◽  
pp. 573-589 ◽  
Author(s):  
Louis Pillemer ◽  
Oscar D. Ratnoff ◽  
Livia Blum ◽  
I. H. Lepow

Human complement is inactivated by plasmin, the proteolytic enzyme of plasma or serum active at or near neutrality. The addition of streptokinase to human serum, which converts plasminogen to plasmin, also causes the inactivation of complement components C'2 and C'4 and varying amounts of C'1. C'3 is the most resistant to inactivation by plasmin. Chloroform-activated human plasmin and bovine plasmin also destroy these components of complement, but are less effective than the streptokinase-activated enzyme. The inactivation of complement by the addition of streptokinase to human serum is inhibited by high hydrogen ion concentrations, low temperature, and elevated ionic strength. The inactivation of the components of complement in various fractions of serum is influenced by the available plasminogen and the content of plasmin inhibitors in these fractions. Certain similarities are pointed out between the components of complement and the factors in the plasmin system and between the inactivation of the components of complement by antigen-antibody reactions, by specific agents, and by plasmin. The possible significance of these relationships in immune hemolysis and complement fixation, and the possible role of the plasmin system in the instability of complement and the development of anticomplementary properties in serum are discussed.


Sign in / Sign up

Export Citation Format

Share Document