Colour coding in the superior temporal sulcus of rhesus monkey visual cortex

In the rhesus monkey, the posterior bank of the superior temporal sulcus forms part of the prestriate visual cortex and has two regions, a medial one and a lateral one, which have their own separate callosal connections. The afferent input to these two regions was studied in experiments where the corpus callosum was sectioned, and labelled amino acids were injected into other visual areas. By this method, it was found that area 17 projects to that part of the superior temporal sulcus occupied by the more medial of the two callosal inputs. By contrast, the part of the sulcus occupied by the more lateral callosal input was found to receive a strong projection from the fourth visual complex, an area rich in colour-coded cells. Recordings were made from single cells in the superior temporal sulcus in animals in which the corpus callosum had been sectioned previously. The degeneration produced by this procedure was used to provide anatomical landmarks enabling us to assign cells to the lateral or the medial regions of the sulcus. Such recordings revealed that receptive fields were topographically organized in the lateral part of the sulcus and that most cells were colour specific. By contrast, cells recorded from in the region of the more medial callosal patch within this sulcus were directionally selective, without any obvious colour coding. It was concluded from these combined anatomico-physiological experiments that there are at least two distinct regions in the superior temporal sulcus which have different afferent connections and functional properties.

1977 ◽  
Vol 199 (1137) ◽  
pp. 588-588

Proc. R. Soc. Loud . B 197, 195-223 (1977) Colour coding in the superior temporal sulcus of rhesus monkey visual cortex By S. M. Zeki Page 211, paragraph 2, penultimate line: ‘. . .shown to the right of figure 13. . . ’ should read ‘. . .shown to the right of figure 14. . . ’. Page 215, description of figure 11: ‘The response of cell 7 of figure 5’ should read ‘The response of cell 7 of figure 9’. Plate 4 (facing page 216). ( a ) Description of plate 4, line 3: ‘reconstructed in figure 11’ should read ‘reconstructed in figure 12’. In the last line, ‘figure 21’ should be deleted and ‘plate 4’ should read ‘plate 5’. ( b ) Description of figure 12, fifth line: ‘ . . .is plotted in figure 14’ should read ‘. . .is plotted in figure 15’. Plate 5 (facing page 217), description, line 1: ‘shown in plate 3’ should read ‘shown in plate 4’. Page 218, description of figure 15: ‘figure 11’ should read ‘figure 12’. Page 220, fifth line from bottom: ‘(see figure 5 and Zeki 1975)’ should read ‘(see figure 9 and Zeki 1975)'.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1975 ◽  
Vol 94 (3) ◽  
pp. 401-412 ◽  
Author(s):  
Zsusanna Wiesenfeld ◽  
Ezriel E. Kornel

1983 ◽  
Vol 49 (3) ◽  
pp. 804-818 ◽  
Author(s):  
D. G. Tieman ◽  
M. A. McCall ◽  
H. V. Hirsch

1. In order to investigate the effects of an imbalance in stimulation to the eyes without the confounding influence of continuous deprivation of one eye, we reared cats with unequal alternating monocular exposure (AME) and, for comparison, cats with equal AME. We recorded extracellularly from single cells in area 17 of visual cortex. 2. For unequal AME cats, a majority of the cells that were visually responsive were dominated by the eye that had received more patterned visual experience. The percentage of cells dominated by the more experienced eye was greater with a large imbalance in stimulation to the two eyes (AME 8/1, 77%) than with a small imbalance (AME 8/4, 62%). 3. For both equal AME cats and unequal AME cats, we obtained evidence for differences in cells activated by the contralateral and by the ipsilateral afferents. a) In equal AME cats receiving only 1 h of exposure per day, we obtained a greater dominance by the contralateral eye (60%) than in equal AME cats receiving 8 h of exposure per day (42%). b) Although a large imbalance in stimulation (AME 8/1) resulted in a shift in ocular dominance in both cortical hemispheres, a moderate imbalance (AME 8/4) resulted in a smaller shift, which was apparent only in the hemisphere ipsilateral to the less-experienced eye. 4. The percentage of cortical cells responsive to each eye was uniform throughout the depth of cortex. Thus, for the unequal AME cats, cells activated by the less-experienced eye were no more frequent in layer IV of visual cortex than in the infragranular and supragranular layers. 5. Although almost all cells recorded from AME cats had relatively normal receptive-field properties, three receptive-field properties of cells in unequal AME cats showed an effect of the rearing. In each case cells dominated by the less-experienced eye and recorded in the cortical hemisphere ipsilateral to it showed the largest changes. These cells a) were more poorly tuned, b) had lower cutoff velocities, and c) had smaller receptive fields. 6. It is suggested that cortical cells that putatively receive Y-cell afferents from the dorsal lateral geniculate nucleus (LGNd) are more affected by an imbalance in stimulation than are cortical cells that putatively receive X-cell afferents. Thus, the decrease in mean receptive-field area and cutoff velocity for the cells dominated by the less-experienced eye is suggested to be due to a greater shift in ocular dominance by the cortical cells receiving Y-cell afferents from the LGNd. 7. The interaction between binocular competition and deprivation of pattern vision may contribute to differences between monocularly deprived cats and unequal AME cats.


1980 ◽  
Vol 207 (1169) ◽  
pp. 499-506 ◽  

Small cortical lesions were made in regions of the primary visual cortex (V1) representing different retinal eccentricities. It was found that, whereas all parts of V1 project to visual areas V2, V3 and the motion area of the superior temporal sulcus, only parts of V1 representing peripheral eccentricities (in excess of 30°) project directly to visual area V3A.


1995 ◽  
Vol 73 (9) ◽  
pp. 1323-1338 ◽  
Author(s):  
Yuzo M. Chino

When visual cortical neurons in adult mammals are deprived of their normal afferent input from retinae, they are capable of acquiring new receptive fields by modifying the effectiveness of existing intrinsic connections, a basis for topographic map reorganization. To gain insights into the underlying mechanisms and functional significance of this adult plasticity, we measured the spatial limits and time course of retinotopic map reorganization. We also determined whether reactivated neurons exhibit normal receptive field properties. We found that virtually all units in the denervated zone of cortex acquired new receptive fields (i.e., there were no silent areas in the cortex) and map reorganization can take place within hours of deafferentation provided that retinal lesions are relatively small (<5°). Furthermore, after long periods of recovery, reactivated units exhibited strikingly normal selectivity to stimulus orientation, direction of movement, and spatial frequency if relatively high contrast stimuli were used. However, responsiveness of these neurons, measured in terms of the maximum response amplitude and the contrast threshold, was clearly reduced. Thus, contrary to traditional belief, the adult visual cortex is capable of exhibiting considerable plasticity, and reactivated neurons are capable of contributing to an analysis of a visual scene.Key words: adult plasticity, visual cortex, retinal lesions, map reorganization, cat.


2005 ◽  
Vol 22 (6) ◽  
pp. 839-858 ◽  
Author(s):  
TAKUJI KASAMATSU ◽  
KEIKO MIZOBE ◽  
ERICH E. SUTTER

This study relates to local field potentials and single-unit responses in cat visual cortex elicited by contrast reversal of bar gratings that were presented in single, double, or multiple discrete patch (es) of the visual field. Concurrent stimulation of many patches by means of the pseudorandom, binary m-sequence technique revealed interactions between their respective responses. An analysis identified two distinct components of local field potentials: a fast local component (FLC) and a slow distributed component (SDC). The FLC is thought to be a primarily postsynaptic response, as judged by its relatively short latency. It is directly generated by thalamocortical volleys following retinotopic stimulation of receptive fields of a small cluster of single cells, combined with responses to recurrent excitation and inhibition derived from the cells under study and immediately neighboring cells. In contrast, the SDC is thought to be an aggregate of dendritic potentials related to the long-range lateral connections (i.e. long-range coupling). We compared the suppressive effects of a GABAA-receptor agonist, muscimol, on the FLC and SDC with those of a GABAB-receptor agonist, baclofen, and found that muscimol more strongly suppressed the FLC than the SDC, and that the reverse was the case for baclofen. The differential suppression of the FLC and SDC found in the present study is consistent with the notion that intracortical electrical signals related to the FLC terminate on the somata and proximal/basal dendrites, while those related to the SDC terminate on distal dendrites.


2021 ◽  
Author(s):  
Dylan Barbera ◽  
Nicholas J. Priebe ◽  
Lindsey L. Glickfeld

AbstractSensory neurons not only encode stimuli that align with their receptive fields but are also modulated by context. For example, the responses of neurons in mouse primary visual cortex (V1) to gratings of their preferred orientation are modulated by the presence of superimposed orthogonal gratings (“plaids”). The effects of this modulation can be diverse: some neurons exhibit cross-orientation suppression while other neurons have larger responses to a plaid than its components. We investigated whether these diverse forms of masking could be explained by a unified circuit mechanism. We report that the suppression of cortical activity does not alter the effects of masking, ruling out cortical mechanisms. Instead, we demonstrate that the heterogeneity of plaid responses is explained by an interaction between stimulus geometry and orientation tuning. Highly selective neurons uniformly exhibit cross-orientation suppression, whereas in weakly-selective neurons masking depends on the spatial configuration of the stimulus, with effects transitioning systematically between suppression and facilitation. Thus, the diverse responses of mouse V1 neurons emerge as a consequence of the spatial structure of the afferent input to V1, with no need to invoke cortical interactions.


Sign in / Sign up

Export Citation Format

Share Document