scholarly journals Pedigrees, assortative mating and speciation in Darwin's finches

2008 ◽  
Vol 275 (1635) ◽  
pp. 661-668 ◽  
Author(s):  
Peter R Grant ◽  
B. Rosemary Grant
2013 ◽  
Vol 59 (1) ◽  
pp. 8-19 ◽  
Author(s):  
Jeffrey Podos ◽  
Rie Dybboe ◽  
Mads Ole Jensen

Abstract Many recent studies of ecological speciation have focused on “magic trait” scenarios, in which divergent selection on viability traits leads inextricably to corresponding divergence in mechanisms, especially mate recognition systems, that facilitate assortative mating. Speciation however may also proceed via other scenarios, such as when populations experience directly selected or random divergence in mate recognition systems. The relative contributions of magic trait versus other scenarios for speciation remain virtually unexplored. The present study aims to test the relative contribution of the magic trait scenario in the divergence of populations of the medium ground finch Geospiza fortis of Santa Cruz Island, Galapagos. First, we assess differences in G. fortis song between a northern population (Borrero Bay) and a southeastern population (El Garrapatero), differences that we propose (along with other within-island geographic song variations) have arisen via scenarios that do not involve a magic trait scenario. Pairwise comparisons of raw and composite (PC) song parameters, as well as discriminant functions analyses, reveal significant patterns of song divergence between sites. Second, we test the ability of territorial males at Borrero Bay to discriminate songs from the two sites. We find that G. fortis males can discriminate within-island song variants, responding more strongly to local than to “foreign” songs, along 3 raw and 1 composite response measures. Third, we compare these findings to prior data sets on song divergence and discrimination in Santa Cruz G. fortis. These comparisons suggest that song divergence and discrimination are shaped less strongly by geographic sources than by morphological (beak-related) sources. We thus argue that interpopulation song divergence and discrimination, fundamental elements of assortative mating in Darwin’s finches, can be fostered in early stages of divergence under magic trait as well as alternative scenarios for speciation, but with more emphasis on the magic trait scenario, at least for this species on this island.


2012 ◽  
Vol 58 (3) ◽  
pp. 484-492 ◽  
Author(s):  
Daniel I. Bolnick ◽  
Mark Kirkpatrick

Abstract The term ‘assortative mating’ has been applied to describe two very different phenomena: (1) the tendency for individuals to choose phenotypically similar mates from among conspecifics; or (2) the tendency to prefer conspecific over hete-rospecific mates (behavioral reproductive isolation). Both forms of assortative mating are widespread in nature, but the relationship between these behaviors remains unclear. Namely, it is plausible that a preference for phenotypically similar conspecifics incidentally reduces the probability of mating with phenotypically divergent heterospecifics. We present a model to calculate how the level of reproductive isolation depends on intraspecific assortative mating and the phenotypic divergence between species. For empirically reasonable levels of intraspecific assortment on a single trait axis, we show that strong reproductive isolation requires very substantial phenotypic divergence. We illustrate this point by applying our model to empirical data from threespine stickleback Gasterosteus aculeatus and Darwin’s Finches (Geospiza spp). We conclude that typical levels of intraspecific assortment cannot generally be extrapolated to explain levels of interspecific reproductive isolation. Instead, reproductive isolation between species likely arises from different mate choice behaviors, or multivariate assortative mating.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 147
Author(s):  
Mariana Villegas ◽  
Catherine Soos ◽  
Gustavo Jiménez-Uzcátegui ◽  
Shukri Matan ◽  
Keith A. Hobson

Darwin’s finches are a classic example of adaptive radiation involving differential use of dietary resources among sympatric species. Here, we apply stable isotope (δ13C, δ15N, and δ2H) analyses of feathers to examine ecological segregation among eight Darwin’s finch species in Santa Cruz Island, Galápagos collected from live birds and museum specimens (1962–2019). We found that δ13C values were higher for the granivorous and herbivorous foraging guilds, and lower for the insectivorous finches. Values of δ15N were similar among foraging guilds but values of δ2H were higher for insectivores, followed by granivores, and lowest for herbivores. The herbivorous guild generally occupied the largest isotopic standard ellipse areas for all isotopic combinations and the insectivorous guild the smallest. Values of δ2H provided better trophic discrimination than those of δ15N possibly due to confounding influences of agricultural inputs of nitrogen. Segregation among guilds was enhanced by portraying guilds in three-dimensional isotope (δ13C, δ15N, and δ2H) space. Values of δ13C and δ15N were higher for feathers of museum specimens than for live birds. We provide evidence that Darwin’s finches on Santa Cruz Island tend to be generalists with overlapping isotopic niches and suggest that dietary overlap may also be more considerable than previously thought.


Sign in / Sign up

Export Citation Format

Share Document