scholarly journals Release from intralocus sexual conflict? Evolved loss of a male sexual trait demasculinizes female gene expression

2019 ◽  
Vol 286 (1901) ◽  
pp. 20190497 ◽  
Author(s):  
Jack G. Rayner ◽  
Sonia Pascoal ◽  
Nathan W. Bailey

The loss of sexual ornaments is observed across taxa, and pleiotropic effects of such losses provide an opportunity to gain insight into underlying dynamics of sex-biased gene expression and intralocus sexual conflict (IASC). We investigated this in a Hawaiian field cricket, Teleogryllus oceanicus , in which an X-linked genotype ( flatwing ) feminizes males' wings and eliminates their ability to produce sexually selected songs. We profiled adult gene expression across somatic and reproductive tissues of both sexes. Despite the feminizing effect of flatwing on male wings, we found no evidence of feminized gene expression in males. Instead, female transcriptomes were more strongly affected by flatwing than males’, and exhibited demasculinized gene expression. These findings are consistent with a relaxation of IASC constraining female gene expression through loss of a male sexual ornament. In a follow-up experiment, we found reduced testes mass in flatwing males, whereas female carriers showed no reduction in egg production. By contrast, female carriers exhibited greater measures of body condition. Our results suggest sex-limited phenotypic expression offers only partial resolution to IASC, owing to pleiotropic effects of the loci involved. Benefits conferred by release from intralocus conflict could help explain widespread loss of sexual ornaments across taxa.

Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 601-609 ◽  
Author(s):  
Zsolt Tallóczy ◽  
Rebecca Mazar ◽  
Denise E Georgopoulos ◽  
Fausto Ramos ◽  
Michael J Leibowitz

Abstract The cytoplasmically inherited [KIL-d] element epigenetically regulates killer virus gene expression in Saccharomyces cerevisiae. [KIL-d] results in variegated defects in expression of the M double-stranded RNA viral segment in haploid cells that are “healed” in diploids. We report that the [KIL-d] element is spontaneously lost with a frequency of 10−4–10−5 and reappears with variegated phenotypic expression with a frequency of ≥10−3. This high rate of loss and higher rate of reappearance is unlike any known nucleic acid replicon but resembles the behavior of yeast prions. However, [KIL-d] is distinct from the known yeast prions in its relative guanidinium hydrochloride incurability and independence of Hsp104 protein for its maintenance. Despite its transmissibility by successive cytoplasmic transfers, multiple cytoplasmic nucleic acids have been proven not to carry the [KIL-d] trait. [KIL-d] epigenetically regulates the expression of the M double-stranded RNA satellite virus genome, but fails to alter the expression of M cDNA. This specificity remained even after a cycle of mating and meiosis. Due to its unique genetic properties and viral RNA specificity, [KIL-d] represents a new type of genetic element that interacts with a viral RNA genome.


Sign in / Sign up

Export Citation Format

Share Document