scholarly journals Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica

2020 ◽  
Vol 287 (1929) ◽  
pp. 20200909
Author(s):  
Jan Scherberich ◽  
Roxana Taszus ◽  
Alexander Stoessel ◽  
Manuela Nowotny

In some insects and vertebrate species, the specific enlargement of sensory cell epithelium facilitates the perception of particular behaviourally relevant signals. The insect auditory fovea in the ear of the bushcricket Ancylecha fenestrata (Tettigoniidae: Phaneropterinae) is an example of such an expansion of sensory epithelium. Bushcricket ears developed in convergent evolution anatomical and functional similarities to mammal ears, such as travelling waves and auditory foveae, to process information by sound. As in vertebrate ears, sound induces a motion of this insect hearing organ (crista acustica), which can be characterized by its amplitude and phase response. However, detailed micromechanics in this bushcricket ear with an auditory fovea are yet unknown. Here, we fill this gap in knowledge for bushcricket, by analysing and comparing the ear micromechanics in Ancylecha fenestrata and a bushcricket species without auditory fovea ( Mecopoda elongata , Tettigoniidae: Mecopodinae) using laser-Doppler vibrometry. We found that the increased size of the crista acustica, expanded by a foveal region in A. fenestrata , leads to higher mechanical amplitudes and longer phase delays in A. fenestrata male ears. Furthermore, area under curve analyses of the organ oscillations reveal that more sensory units are activated by the same stimuli in the males of the auditory fovea-possessing species A. fenestrata . The measured increase of phase delay in the region of the auditory fovea supports the conclusion that tilting of the transduction site is important for the effective opening of the involved transduction channels. Our detailed analysis of sound-induced micromechanics in this bushcricket ear demonstrates that an increase of sensory epithelium with foveal characteristics can enhance signal detection and may also improve the neuronal encoding.

1999 ◽  
Vol 202 (8) ◽  
pp. 909-918 ◽  
Author(s):  
M.C. Gopfert ◽  
L.T. Wasserthal

In contrast to previous assumptions, mouthparts form hearing organs not only in choerocampine hawkmoths but also in some distantly related acherontiine hawkmoth species. Four of the six acherontiine species studied revealed responses to ultrasonic sounds when stimulated during tethered flight. The responses included changes in flight speed and non-directional turns. Individuals from two species also responded by emitting sound. The minimum thresholds of the flight pattern changes were approximately 70 dB in all species studied, with species-specific best frequencies between 30 and 70 kHz. Some acherontiine species also move their tongue in a stereotyped way when stimulated acoustically. The activity of the muscles involved in this tongue reflex was characterized in the present study and used in combination with ablation experiments to localize the hearing organ. These experiments revealed auditory functions of the labial palps and the labral pilifers similar to those found in Choerocampina. The palp contributes a 20–25 dB rise in sensitivity, whereas the pilifer appears to contain the sensory organ. Structural differences suggest a convergent evolution of hearing in hawkmoths: in the place of the swollen palps of Choerocampina, acherontiine species capable of hearing possess a scale-plate of the palps that interacts with an articulating pilifer, while this modification is absent in closely related non-hearing species.


1999 ◽  
Vol 266 (1424) ◽  
pp. 1161-1167 ◽  
Author(s):  
Reinhard Lakes-Harlan ◽  
Heiko Stölting ◽  
Andreas Stumpner

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Solal Bloch ◽  
Hanako Hagio ◽  
Manon Thomas ◽  
Aurélie Heuzé ◽  
Jean-Michel Hermel ◽  
...  

Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homology is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a thalamic-like sensory structure of teleosts, the preglomerular complex (PG), focusing on the visual projection neurons. Similarly to the tectofugal thalamic nuclei in amniotes, the lateral nucleus of PG receives tectal information and projects to the pallium. However, our cell lineage study in zebrafish reveals that the majority of PG cells are derived from the midbrain, unlike the amniote thalamus. We also demonstrate that the PG projection neurons develop gradually until late juvenile stages. Our data suggest that teleost PG, as a whole, is not homologous to the amniote thalamus. Thus, the thalamocortical-like projections evolved from a non-forebrain cell population, which indicates a surprising degree of variation in the vertebrate sensory systems.


2020 ◽  
Author(s):  
Solal Bloch ◽  
Hanako Hagio ◽  
Manon Thomas ◽  
Aurélie Heuzé ◽  
Jean-Michel Hermel ◽  
...  

AbstractAscending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homologous relationship is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a visual relay nucleus in zebrafish (a teleost fish). Similarly to the tectofugal visual thalamic nuclei in amniotes, the lateral part of the preglomerular complex (PG) in teleosts receives tectal information and projects to the pallium. However, our cell lineage study reveals that the majority of PG cells are derived from the midbrain, not from the forebrain. We also demonstrate that the PG projection neurons develop gradually until juvenile stage, unlike the thalamic projection neurons. Our data suggest that teleost PG is not homologous to the amniote thalamus and that thalamocortical-like projections can evolve from a non-forebrain cell population. Thus, sensory pathways in vertebrate brains exhibit a surprising degree of variation.


Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


1969 ◽  
Vol 33 (4) ◽  
pp. 564-565
Author(s):  
S Nakamura ◽  
Y Ishii ◽  
Y Murakami ◽  
S Matusyama
Keyword(s):  

1999 ◽  
Vol 169 (9) ◽  
pp. 1011 ◽  
Author(s):  
Faina S. Berezovskaya ◽  
G.P. Karev
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document