tethered flight
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Fintan Healy ◽  
Alessandro Pontillo ◽  
Djamel Rezgui ◽  
Jonathan E. Cooper ◽  
James Kirk ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Yu-xuan Zheng ◽  
Ying Wang ◽  
Bo-ya Dai ◽  
Zheng Li ◽  
Qi-run Huo ◽  
...  

Understanding the traits related to species colonization and invasion, is a key question for both pest management and evolution. One of the key components is flight, which has been measured for a number of insect species through radar and tethered flight mill systems, but a general understanding of insect flight at a community level is lacking. In this study, we used flight mill experiments to quantify flight abilities of moth species, and simulation experiments to study which moths in mainland China have the potential for cross-island dispersal. We found that moths from superfamily Geometroidea (family Geometridae) have the weakest flight ability among the seven Lepidoptera superfamilies, which is characterized by the shortest longest single flight (LSF), the shortest time corresponding to the longest single flight (TLSF) (timecorrespondingtothelongestsingleflight), the lowest total distance flown (TDF), and the lowest average speed during the flight (VTDF). Surprisingly, the family Pyralidae (superfamily Pyraloidea) has the highest flight endurance of all 186 species of 12 families in this study, which is unexpected, given its small size and morphological traits yet it shows the longest LSF and TLSF. The comparison between species common to mainland and islands shows that flight distance (LSF) may be more important for species spread than flight speed. The results of mainland-island simulations show that when P(LSF>CD) (the proportion of individuals whose LSF is greater than the closest distance (CD) between mainland and island to the total number of individuals in the population) is less than 0.004, it is difficult for moth species to disperse to across islands without relying on external factors such as airflow. Over extended periods, with the immigration of species with strong flight abilities, islands are more likely to recruit species with stronger flight abilities.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1083
Author(s):  
Weixiang Lv ◽  
Xingfu Jiang ◽  
Xiujie Chen ◽  
Yunxia Cheng ◽  
Jixing Xia ◽  
...  

Understanding how species that follow different life-history strategies respond to stressful temperature can be essential for efficient treatments of agricultural pests. Here, we focused on how the development, reproduction, flight, and reproductive consequences of migration of Cnaphalocrocis medinalis were influenced by exposure to different rearing temperatures in the immature stage. We found that the immature rice leaf roller that were reared at low temperatures (18 and 22 °C) developed more slowly than the normal temperature 26 °C, while those reared at high temperatures (34 °C) grew faster. Female adults from low immature stage rearing temperatures showed stronger reproductive ability than those at 26 and 34 °C, such as the preoviposition period (POP) significantly decreased, while the total lifetime fecundity obviously increased. However, 34 °C did not significantly reduce the reproductive performances of females compared to 26 °C. On the contrary, one relative decreased tendency of flight capacity was found in the lower immature temperature treatments. Furthermore, flight is a costly strategy for reproduction output to compete for limited internal resources. In the lower temperature treatments, after d1-tethered flight treatment, negative reproductive consequences were found that flight significantly decreased the lifetime fecundity and mating frequency of females from low rearing temperatures in the immature stage compared to the controls (no tethered-flight). However, in the 26 and 34 °C treatments, the same flight treatment induced a positive influence on reproduction, which significantly reduced the POP and period of first oviposition (PFO). The results suggest that the experience of relative high temperatures in the immature stage is more likely to trigger the onset of migration, but lower temperatures in the immature stage may induce adults to have a greater resident propensity with stronger reproductive ability.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 208
Author(s):  
Hyeok-Min Kwon ◽  
Dong-Kyu Lee

In case of a fire at a high-rise building which is densely populated, an extension ladder is used to rescue people who have yet to evacuate to a safe place away from the fire, whereas those who are stranded at a height that is unreachable with the ladder should be promptly saved with different rescue methods. In this case, an application of the tethered flight system capable of receiving power over a power cable from the ground to a multicopter may guarantee effective execution of the rescue plan at the scene where fire is raging without any restrictions of the flight time. This article identified restrictions that should be considered in the design of a multicopter capable of tethered flight aimed to rescue stranded people at an inaccessible location with an extension ladder at a fire-ravaged high-rise building and assessed its feasibility. A power cable capable of providing dozens of kilowatts of electricity should be installed to enable the implementation of the rescue mission using the tethered multicopter. A flexible multi-body dynamics modeling and simulation with viscoelastic characteristics and heavy weight of power cable were carried out to evaluate the effects of such cable of the tethered flight system on the dynamic characteristics of the multicopter. The results indicate that as for a heavy-lift tethered multicopter designed to be utilized for rescue operations, the properties of the power cable, such as weight, rigidity and length, have a major impact on the position and attitude control performance.


2021 ◽  
Vol 288 (1953) ◽  
pp. 20211082
Author(s):  
Tomer Urca ◽  
Eran Levin ◽  
Gal Ribak

Measuring metabolic rate (MR) poses a formidable challenge in free-flying insects who cannot breathe into masks or be trained to fly in controlled settings. Consequently, flight MR has been predominantly measured on hovering or tethered insects flying in closed systems. Stable isotopes such as labelled water allow measurement of MR in free-flying animals but integrates the measurement over long periods exceeding the average flight duration of insects. Here, we applied the ‘bolus injection of isotopic 13 C Na-bicarbonate’ method to insects to measure their flight MR and report a 90% accuracy compared to respirometry. We applied the method on two beetle species, measuring MR during free flight and tethered flight in a wind tunnel. We also demonstrate the ability to repeatedly use the technique on the same individual. Therefore, the method provides a simple, reliable and accurate tool that solves a long-lasting limitation on insect flight research by enabling the measurement of MR during free flight.


2020 ◽  
Vol 20 (5) ◽  
Author(s):  
Huanxiu Liu ◽  
Chunhua Duan ◽  
Yukun Qi ◽  
Lili Ren ◽  
Haiwei Wu

Abstract The movement behavior of the pine needle gall midge (Thecodiplosis japonensis Uchida Et Inouye (Diptera: Cecidomyiidae)), an invasive species in China, was determined by using a tethered flight technique and digital videography in the laboratory. The flight distance, duration, and speed of females were compared at different ages (2–10 h) and ambient temperatures (17, 21, 26, and 30°C). Female flight distance and duration at 26°C were significantly greater than those at 17°C and 21°C. The age of T. japonensis did not significantly affect the three flight characteristics. For females at 2–10 h of age at 26°C and 70% RH, the maximum flight distance was 667.59 m; the longest flight time was 6,222.34 s; and the fastest flight speed was 0.44 m·s−1. For larvae wetted with water, the highest jump was 5.7 cm; the longest jump was 9.6 cm; and the greatest distance moved in 5 min was 27.13 cm, which showed that the active dispersal potential of larvae was very low.


2020 ◽  
Author(s):  
Roy Faiman ◽  
Alpha Seydou YARO ◽  
Moussa Diallo ◽  
Adama Dao ◽  
Djibril Samake ◽  
...  

Abstract Background In the West African Sahel, mosquito reproduction is halted during the 5-7 month-long dry season, due to the absence of surface waters required for larval development. However, recent studies have suggested that both Anopheles gambiae sensu stricto (s.s.) and Anopheles arabiensis repopulate this region via migration from distant locations where larval sites are perennial. Anopheles coluzzii engages in more regional migration, presumably within the Sahel, following shifting resources correlating with the ever-changing patterns of Sahelian rainfall. Understanding mosquito migration is key to controlling malaria—a disease that continues to claim more than 400,000 lives annually, especially those of African children. Using tethered flight data of wild mosquitoes, the distribution of flight parameters were evaluated as indicators of long-range migrants versus appetitive flyers, and the species specific seasonal differences and gonotrophic states compared between two flight activity modalities. Morphometrical differences were evaluated in the wings of mosquitoes exhibiting high flight activity (HFA) vs. low flight activity (LFA).Methods A novel tethered-flight assay was used to characterize flight in the three primary malaria vectors- An. arabiensis, An. coluzzii and An. gambiae s.s. The flights of tethered wild mosquitoes were audio-recorded from 21:00h to 05:00h in the following morning and three flight aptitude indices were examined: total flight duration, longest flight bout, and the number of flight bouts during the assay.Results The distributions of all flight indices were strongly skewed to the right, indicating that the population consisted of a majority of low-flight activity (LFA) mosquitoes and a minority of high-flight activity (HFA) mosquitoes. The median total flight was 586 seconds and the maximum value was 16,110 seconds (~4.5 h). In accordance with recent results, flight aptitude peaked in the wet season, and was higher in gravid females than in non-blood-fed females. Flight aptitude was also found to be higher in An. coluzzii compared to An. arabiensis, with intermediate values in An. gambiae s.s., but displaying no statistical difference. Evaluating differences in wing size and shape between LFA individuals and HFA ones, the wing size of HFA An. coluzzii was larger than that of LFAs during the wet season—its length was wider than predicted by allometry alone, indicating a change in wing shape. No statistically significant differences were found in the wing size/shape of An. gambiae s.s. or An. arabiensis.Conclusions The partial agreement between the tethered flight results and recent results based on aerial sampling of these species suggest a degree of discrimination between appetitive flyers and long-distance migrants although identifying HFAs as long-distance migrants is not recommended without further investigation.


2020 ◽  
Author(s):  
Roy Faiman ◽  
Alpha Seydou YARO ◽  
Moussa Diallo ◽  
Adama Dao ◽  
Djibril Samake ◽  
...  

Abstract Background In the West African Sahel, mosquito reproduction is halted during the 5-7 month-long dry season, due to the absence of surface waters required for larval development. However, recent studies have suggested that both Anopheles gambiae s.s and An. arabiensis repopulate this region via migration from distant locations where larval sites are perennial. An. coluzzii engages in more regional migration, presumably within the Sahel, following shifting resources correlating with the ever-changing patterns of Sahelian rainfall. Understanding mosquito migration is key to controlling malaria—a disease that continues to claim more than 400,000 lives annually, especially those of African children. Using tethered flight data of wild mosquitoes, we evaluated the distribution of flight parameters as indicators of long-range migrants vs. appetitive flyers, compared species specific seasonal differences and gonotrophic states on flight activity. We also evaluated morphometrical differences in the wings of mosquitoes exhibiting high flight activity (HFA) vs. low flight activity (LFA). Methods We used a novel tethered-flight assay to characterize flight in the three primary malaria vectors- An. arabiensis, An. coluzzii and An. gambiae s.s. The flights of tethered wild mosquitoes were audio-recorded from 21:00h to 05:00h in the following morning and three flight aptitude indices were examined: total flight duration, longest flight bout, and the number of flight bouts during the assay. Results The distributions of all flight indices were strongly skewed to the right, indicating that the population consisted of a majority of low-flight activity (LFA) mosquitoes and a minority of high-flight activity (HFA) mosquitoes. The median total flight was 586 seconds and the maximum value was 16,110 seconds (~4.5 h). In accordance with recent results, flight aptitude peaked in the wet season, and was higher in gravid females than in non-bloodfed females. Flight aptitude was also found to be higher in An. coluzzii compared to An. arabiensis, with intermediate values in An. gambiae s.s., but displaying no statistical difference. Evaluating differences in wing size and shape between LFA individuals and HFA ones, the wing size of HFA An. coluzzii was larger than that of LFAs during the wet season—its length was wider than predicted by allometry alone, indicating a change in wing shape. No statistically significant differences were found in the wing size/shape of An. gambiae s.s. or An. arabiensis. Conclusions The partial agreement between the tethered flight results and recent results based on aerial sampling of these species suggest a degree of discrimination between appetitive flyers and long-distance migrants although identifying HFAs as long-distance migrants is not recommended without further investigation.


2020 ◽  
Vol 45 (2-3) ◽  
pp. 110-119 ◽  
Author(s):  
Louisa D. M. Makumbe ◽  
Thabang P. Moropa ◽  
Aruna Manrakhan ◽  
Christopher W. Weldon

Sign in / Sign up

Export Citation Format

Share Document