scholarly journals Five hundred million years to mobility: directed locomotion and its ecological function in a turtle barnacle

2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Benny K. K. Chan ◽  
Yue Him Wong ◽  
Nathan J. Robinson ◽  
Jr-Chi Lin ◽  
Sing-Pei Yu ◽  
...  

Movement is a fundamental characteristic of life, yet some invertebrate taxa, such as barnacles, permanently affix to a substratum as adults. Adult barnacles became ‘sessile’ over 500 Ma; however, we confirm that the epizoic sea turtle barnacle, Chelonibia testudinaria , has evolved the capacity for self-directed locomotion as adults. We also assess how these movements are affected by water currents and the distance between conspecifics. Finally, we microscopically examine the barnacle cement. Chelonibia testudinaria moved distances up to 78.6 mm yr −1 on loggerhead and green sea turtle hosts. Movements on live hosts and on acrylic panels occasionally involved abrupt course alterations of up to 90°. Our findings showed that barnacles tended to move directly against water flow and independent of nearby conspecifics. This suggests that these movements are not passively driven by external forces and instead are behaviourally directed. In addition, it indicates that these movements function primarily to facilitate feeding, not reproduction. While the mechanism enabling movement remained elusive, we observed that trails of cement bore signs of multi-layered, episodic secretion. We speculate that proximal causes of movement involve one or a combination of rapid shell growth, cement secretion coordinated with basal membrane lifting, and directed contraction of basal perimeter muscles.

1977 ◽  
Vol 33 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Paul Licht ◽  
Duncan S. MacKenzie ◽  
Harold Papkoff ◽  
Susan Farmer

1998 ◽  
Vol 4 (S2) ◽  
pp. 1158-1159
Author(s):  
Yuanan Lu ◽  
Vivek R. Nerurkar ◽  
Tina M. Weatherby ◽  
Richard Yanagihara

The near epidemic occurrence of fibropapilloma in green sea turtle (Chelonia my das) (Figure 1) significantly threatens the survival of this species which is protected under the U.S. Endangered Species Act. Although collective evidence suggests a viral etiology, the causative virus of green sea turtle fibropapilloma has not been isolated. To facilitate the isolation and characterization of the causative virus(es), we established 13 cell lines from multiple organs/tissues (tumor, kidney, lung, heart, gall bladder, testis, and skin) of green sea turtles with fibropapilloma. Serial subcultivation of cell lines derived from lungs, testis, eye soft tissues and tumors resulted in the formation of tumor-like aggregates, which attained sizes of 1-2 mm in diameter within two weeks (Figure 2). Media from such cultures, when inoculated onto cells derived from healthy turtle embryos, produced similar tumor-like aggregates, suggesting the presence of a transmissible agent.


2009 ◽  
Vol 177 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Marlin H. Simon ◽  
Glenn F. Ulrich ◽  
Alan S. Parkes

2013 ◽  
Vol 45 (6) ◽  
pp. 701-706 ◽  
Author(s):  
Zhuo Wang ◽  
Juan Pascual-Anaya ◽  
Amonida Zadissa ◽  
Wenqi Li ◽  
Yoshihito Niimura ◽  
...  

2020 ◽  
Vol 167 (5) ◽  
Author(s):  
Jacques-Olivier Laloë ◽  
Jonathan Monsinjon ◽  
Cécile Gaspar ◽  
Margaux Touron ◽  
Quentin Genet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document