Structural health monitoring of civil infrastructure

Author(s):  
J.M.W Brownjohn

Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued ‘fitness for purpose’ of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural ‘health’.

2020 ◽  
pp. 8-16
Author(s):  
Yunchao Tang ◽  
Yunfan Lin ◽  
Xueyu Huang ◽  
Minghui Yao ◽  
Zhaofeng Huang ◽  
...  

Machine-vision technology has progressed remarkably in both accuracy and speed owing to advances in computer technology and artificial intelligence. In this paper, state-of-the-art research on vision-based techniques is reviewed for civil infrastructure condition assessment. The major challenges of machine vision technique in civil structural health monitoring are presented.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2778 ◽  
Author(s):  
Mohsen Azimi ◽  
Armin Eslamlou ◽  
Gokhan Pekcan

Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.


Increased attentiveness on the environmental and effects of aging, deterioration and extreme events on civil infrastructure has created the need for more advanced damage detection tools and structural health monitoring (SHM). Today, these tasks are performed by signal processing, visual inspection techniques along with traditional well known impedance based health monitoring EMI technique. New research areas have been explored that improves damage detection at incipient stage and when the damage is substantial. Addressing these issues at early age prevents catastrophe situation for the safety of human lives. To improve the existing damage detection newly developed techniques in conjugation with EMI innovative new sensors, signal processing and soft computing techniques are discussed in details this paper. The advanced techniques (soft computing, signal processing, visual based, embedded IOT) are employed as a global method in prediction, to identify, locate, optimize, the damage area and deterioration. The amount and severity, multiple cracks on civil infrastructure like concrete and RC structures (beams and bridges) using above techniques along with EMI technique and use of PZT transducer. In addition to survey advanced innovative signal processing, machine learning techniques civil infrastructure connected to IOT that can make infrastructure smart and increases its efficiency that is aimed at socioeconomic, environmental and sustainable development.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shao-Fei Jiang ◽  
Si-Yao Wu ◽  
Li-Qiang Dong

Optimization techniques have been applied to structural health monitoring and damage detection of civil infrastructures for two decades. The standard particle swarm optimization (PSO) is easy to fall into the local optimum and such deficiency also exists in the multiparticle swarm coevolution optimization (MPSCO). This paper presents an improved MPSCO algorithm (IMPSCO) firstly and then integrates it with Newmark’s algorithm to localize and quantify the structural damage by using the damage threshold proposed. To validate the proposed method, a numerical simulation and an experimental study of a seven-story steel frame were employed finally, and a comparison was made between the proposed method and the genetic algorithm (GA). The results show threefold: (1) the proposed method not only is capable of localization and quantification of damage, but also has good noise-tolerance; (2) the damage location can be accurately detected using the damage threshold proposed in this paper; and (3) compared with the GA, the IMPSCO algorithm is more efficient and accurate for damage detection problems in general. This implies that the proposed method is applicable and effective in the community of damage detection and structural health monitoring.


Sign in / Sign up

Export Citation Format

Share Document