narrow energy range
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 100484
Author(s):  
Tomohiro Oku ◽  
Hiroki Funashima ◽  
Shogo Kawaguchi ◽  
Yoshiki Kubota ◽  
Atsuko Kosuga

2021 ◽  
Author(s):  
Chao Yue

<p>Van Allen Probes observations of ion spectra often show a sustained gap within a very narrow energy range throughout the full orbit. To understand their formation mechanism, we statistically investigate the characteristics of the narrow gaps for oxygen ions and find that they are most frequently observed near the noon sector with a peak occurrence rate of over 30%. The magnetic moment (μ) of the oxygen ions in the gap shows a strong dependence on magnetic local time (MLT), with higher and lower μ in the morning and afternoon sectors, respectively. Moreover, we find through superposed epoch analysis that the gap formation also depends on geomagnetic conditions. Those gaps formed at lower magnetic moments (μ < 3000 keV/G) are associated with stable convection electric fields, which enable magnetospheric ions to follow a steady drift pattern that facilitates the gap formation by corotational drift resonance. On the other hand, gaps with higher μ values are statistically preceded by a gradual increase of geomagnetic activity. We suggest that ions within the gap were originally located inside the Alfven layer following closed drift paths, before they were transitioned into open drift paths as the convection electric field was enhanced. The sunward drift of these ions, with very low fluxes, forms a drainage void in the dayside magnetosphere manifested as the sustained gap in the oxygen spectrum. This scenario is supported by particle-tracing simulations, which reproduce most of the observed characteristics and therefore provide new insights into inner magnetospheric dynamics.</p>


2016 ◽  
Vol 31 (3) ◽  
pp. 260-267 ◽  
Author(s):  
Senada Avdic ◽  
Beco Pehlivanovic ◽  
Mersad Music ◽  
Alma Osmanovic

This paper deals with correlation analysis of gamma dose rate measured in the test field with the five distinctive soil samples from a few minefields in Federation of Bosnia and Herzegovina. The measurements of ambient dose equivalent rate, due to radionuclides present in each of the soil samples, were performed by the RADIAGEMTM 2000 portable survey meter, placed on the ground and 1m above the ground. The gamma spectrometric analysis of the same soil samples was carried out by GAMMA-RAD5 spectrometer. This study showed that there is a high correlation between the absorbed dose rate evaluated from soil radioactivity and the corresponding results obtained by the survey meter placed on the ground. Correlation analysis indicated that the survey meter, due to its narrow energy range, is not suitable for the examination of cosmic radiation contribution.


2015 ◽  
Vol 713-715 ◽  
pp. 2966-2969
Author(s):  
Yue Fan ◽  
Shao Chang Chen

In this paper, we studied the electronic density of states (DOS) and optical properties ZnO using first-principles method. We find that the electronic density of states was different in bulk ZnO and ZnO nanotube. The DOS of bulk ZnO spread at wide energy while the DOS of ZnO nanotube concentrated in a narrow energy range. The peak around-18 eV moved to a higher energy. The peaks more than Fermi level concentrated to the Fermi level, which meant the conductivity of ZnO nanotube was better than that of bulk ZnO. We also calculated the optical properties of ZnO nanotube. The optical properties showed that there were peaks around 8 eV, which may come from electrons transition between Zn 3dand O 2pstates. Our calculation provided a reference for the application of ZnO nanotube in optical devices.


2009 ◽  
Vol 27 (4) ◽  
pp. 1431-1438 ◽  
Author(s):  
M. Yamauchi ◽  
Y. Ebihara ◽  
I. Dandouras ◽  
H. Rème

Abstract. Sources of low-energy ring current ions in the early morning sector (eastward drifting energy domain of about <5 keV) are examined using both statistical analyses and numerical tracing methods (phase-space mapping and simulation). In about 90% of Cluster perigee traversals at 02~07 local time, these low-energy ring current ions have dual ion populations: one is wedge-like energy-dispersed ions, and the other is a band-like ions over different latitudes in a narrow energy range at the upper energy threshold of the wedge-like energy-dispersed ions. Both components are most likely created during past substorm activities. Numerical tracing results strongly suggest that these two components have different sources with different temperatures and elapsed times. The band-like part most likely comes from ions with plasma sheet temperature (~1 keV), and the energy-dispersed part most likely comes from cold ions (temperature <0.1 keV). The source density of the cold component (0.2~0.5×106/m3) is slightly less than that of the hot component (0.5×106/m3), while Cluster observation shows slightly higher density for the wedge-like part than the low-energy band-like part. The hot source component also explains the observed high-energy (>10 keV) ions drifting westward after adiabatic energization in the nightside under time-varying electric field. The wedge-like part has much shorter elapsed time, i.e., less charge-exchange loss, than the band-like part.


2007 ◽  
Vol 25 (1) ◽  
pp. 171-190 ◽  
Author(s):  
C. Vallat ◽  
N. Ganushkina ◽  
I. Dandouras ◽  
C. P. Escoubet ◽  
M. G. G. T. Taylor ◽  
...  

Abstract. During the last 30 years, several magnetospheric missions have recorded the presence of narrow proton structures in the ring current region. These structures have been referred as "nose-like" structures, due to their appearance when represented in energy-time spectrograms, characterized by a flux value increase for a narrow energy range. Cluster's polar orbit, with a 4 RE perigee, samples the ring current region. The ion distribution functions obtained in-situ by the CIS experiment (for energies of ~5 eV/q to 40 keV/q) reveal the simultaneous presence of several (up to 3) narrow nose-like structures. A statistical study (over one year and a half of CIS data) reveals that double nose structures are preferentially observed in the post-midnight sector. Also, the characteristic energy of the nose (the one observed at the lower energy range when several noses occur simultaneously) reveals a clear MLT dependence during quiet events (Kp<2): a sharp transition in the energy range occurs in the pre-noon sector. Moreover, the multi-nose structures (up to 3 simultaneous noses) appear regardless of the magnetospheric activity level and/or the MLT sector crossed by the spacecraft. Numerical simulations of particles trajectories, using large-scale electric and magnetic field models are also presented. Most of the features have been accurately reproduced (namely the single and double noses), but the triple noses cannot be produced under these conditions and require to consider a more complex electric field model.


2002 ◽  
Vol 20 (3) ◽  
pp. 349-364 ◽  
Author(s):  
N. Y. Buzulukova ◽  
Y. I. Galperin ◽  
R. A. Kovrazhkin ◽  
A. L. Glazunov ◽  
G. A. Vladimirova ◽  
...  

Abstract. We analyse measurements of ion spectral gaps (ISGs) observed by the ION particle spectrometer on board the Interball-2 satellite. The ISG represents a sharp decrease in H+ flux at a particular narrow energy range. ISGs are practically always observed in the inner magnetosphere in a wide MLT range during quiet times. Clear examples of ISG in the morning, dayside, evening and nightside sectors of the magnetosphere are selected for detailed analysis and modeling. To obtain a model ISG, the trajectories of ions drifting in the equatorial plane from their nightside source to the observation point were computed for the energy range 0.1–15 keV. Three global convection models (McIlwain, 1972, 1986; Volland, 1973; Stern, 1975) were tested to reproduce the observed ISGs in all MLT sectors. Qualitative agreement is obtained for all three models, but the better agreement for quiet times is reached with the McIlwain (1972) convection model. It is shown that the ISGs observed by the ION spectrometer throughout the inner magnetosphere are the result of super-position of the two effects, already described in the literature (e.g. McIlwain, 1972; Shirai et al., 1997), but acting under different conditions. Also, the role of particle source location on the model gaps is investigated. It may be concluded that despite the evidence of large amplitude and directional local fluctuations of electric fields in the inner magnetosphere (Quinn et al., 1999), the existence of a stationary average convection pattern is confirmed by this modeling. This fact directly follows from observations of ISGs and from a good agreement of observations with modeled gaps calculated in the frames of adiabatic theory for a stationary (average) convection pattern.Key words. Magnetospheric physics (plasma convection; electric fields)


1999 ◽  
Vol 55 (4) ◽  
pp. 543-553 ◽  
Author(s):  
G. Filippini ◽  
A. Gavezzotti ◽  
J. J. Novoa

The crystal structures of two polymorphs of 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide (the 2-hydronitronylnitroxide radical, HNN) are analyzed by packing energy criteria. Other unobserved polymorphic crystal structures are generated using a polymorph predictor package and three different force fields, one of which is without explicit Coulomb-type terms. The relative importance of several structural motifs (hydrogen-bonded dimers, shape-interlocking dimers or extended hydrogen-bonded chains) is discussed. As usual, many crystal structures within a narrow energy range are generated by the polymorph predictor, confirming that ab initio crystal-structure prediction is still problematic. Comparisons of powder patterns generated from the atomic coordinates of the X-ray structure and from computational crystal structures confirm that although the energy ranking depends on the force field used, the X-ray structure of the \alpha polymorph was found to be among the most stable ones produced by the polymorph predictor, even using the chargeless force field.


1996 ◽  
Vol 452 ◽  
Author(s):  
M. Chamarro ◽  
M. Dib ◽  
C. Gourdon ◽  
P. Lavallard ◽  
O. Lublinskaya ◽  
...  

AbstractWe present results on photoluminescence excitation spectra (PLE) of wurtzite CdSe nanocrystals (NCs) embedded in a glass with effective radii in the range 15–35 Å. Information on the near band-gap absorption of an assembly of NCs is obtained by selecting a narrow energy range in the inhomogeneously broadened photoluminescence band. The size and shape dependence of the lowest exciton states are calculated for slightly non-spherical wurtzite NCs. The experimental results are in good agreement with the theoretical predictions when both shape and size dispersions are taken into account.


Sign in / Sign up

Export Citation Format

Share Document