scholarly journals Cosmological evolution of semilocal string networks

Author(s):  
A. Achúcarro ◽  
A. Avgoustidis ◽  
A. López-Eiguren ◽  
C. J. A. P. Martins ◽  
J. Urrestilla

Semilocal strings—a particular limit of electroweak strings—are an interesting example of a stable non-topological defect whose properties resemble those of their topological cousins, the Abrikosov–Nielsen–Olesen vortices. There is, however, one important difference: a network of semilocal strings will contain segments. These are ‘dumbbells’ whose ends behave almost like global monopoles that are strongly attracted to one another. While closed loops of string will eventually shrink and disappear, the segments can either shrink or grow, and a cosmological network of semilocal strings will reach a scaling regime. We discuss attempts to find a ‘thermodynamic’ description of the cosmological evolution and scaling of a network of semilocal strings, by analogy with well-known descriptions for cosmic strings and for monopoles. We propose a model for the time evolution of an overall length scale and typical velocity for the network as well as for its segments, and some supporting (preliminary) numerical evidence. This article is part of a discussion meeting issue ‘Topological avatars of new physics’.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Martín Novoa-Brunet ◽  
K. Keri Vos

Abstract We consider the time-dependent analysis of Bd→ KSℓℓ taking into account the time-evolution of the Bd meson and its mixing into $$ {\overline{B}}_d $$ B ¯ d . We discuss the angular conventions required to define the angular observables in a transparent way with respect to CP conjugation. The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators, which are independent of form factors and charm-loop contributions. As such, these observables provide robust and powerful cross-checks of the New Physics scenarios currently favoured by global fits to b → sℓℓ data. In addition, we discuss the sensitivity of these observables with respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We illustrate how these new observables can provide a benchmark to discriminate among the various NP scenarios in b → sμμ. We discuss the extension of these results for Bs decays into f0, η or η′.


2018 ◽  
Vol 182 ◽  
pp. 02110
Author(s):  
Sarben Sarkar

In the search of avatars of new physics, we present a new classical solution for electromagnetic monopoles induced by global gravitational monopoles in the presence of a four-dimensional Kalb-Ramond axion field. The torsion induces the magnetic charge of the monopole.


2005 ◽  
Vol 870 ◽  
Author(s):  
V. G. Karpov ◽  
Diana Shvydka ◽  
Yann Roussillon

AbstractThe recently developed physics of thin-film photovoltaics is suggested to be representative of other giant area electronics. We show that (i) giant-area devices are intrinsically nonuniform in the lateral directions, (ii) the nonuniformity spans length scales from millimeters to meters depending on external drivers such as light intensity and bias, and (iii) it significantly impacts the device performance. We derive a fundamental length scale that discriminates between the cases of small and large-area devices, and beyond which a new physics emerges. In addition, we present a practical method of mitigating the nonuniformity effects.


2002 ◽  
Vol 199 ◽  
pp. 203-206
Author(s):  
J. Machalski ◽  
M. Jamrozy

An important aspects of the studies of giant radio sources is that they can constrain models of the cosmological evolution of radio sources (e.g. Condon 1984, ApJ, 287, 461; Dunlop & Peacock 1990, MNRAS, 247, 19) and their host galaxies, as well as the recent analytical models of time evolution of these sources (e.g. Kaiser, Dennett—Thorpe & Alexander 1997, MNRAS, 292, 723; Blundell et al. 1999, AJ, 117, 677). In order to achieve these goals, we undertook the following tasks:


1998 ◽  
Vol 13 (15) ◽  
pp. 1179-1184 ◽  
Author(s):  
L. C. GARCIA DE ANDRADE

An example of a plane topological defect solution of linearized Einstein–Cartan (EC) field equation representing a cosmic wall boundary of spinning matter is given. The source of Cartan torsion is composed of two orthogonal lines of static polarized spins bounded by the cosmic plane wall. The Kopczyński–Obukhov–Tresguerres (KOT) spin fluid stress–energy current coincides with thin planar matter current in the static case. Our solution is similar to the Letelier solution of Einstein equation for multiple cosmic strings. Due to this fact we suggest that the lines of spinning matter could be analogous to multiple cosmic spinning string solution in EC theory of gravity. When torsion is turned off, a pure Riemannian cosmic wall is obtained.


Author(s):  
Lucas Madeira ◽  
Arnol D. García-Orozco ◽  
Michelle A. Moreno-Armijos ◽  
Francisco Ednilson Alves dos Santos ◽  
Vanderlei S. Bagnato

Quantum turbulence is characterized by many degrees of freedom interacting non-linearly to produce disordered states, both in space and time. The advances in trapping, cooling, and tuning the interparticle interactions in atomic Bose-Einstein condensates (BECs) make them excellent candidates for studying quantum turbulence. In this work, we investigate the decaying regime of quantum turbulence in a trapped BEC. Although much progress has been made in understanding quantum turbulence, other strategies are needed to overcome some intrinsic difficulties. We present an alternative way of investigating this phenomenon by defining and computing a characteristic length scale, which possesses relevant characteristics to study the establishment of the quantum turbulent regime. One intrinsic difficulty related to these systems is that absorption images of BECs are projected to a plane, thus eliminating some of the information present in the original momentum distribution. We overcome this difficulty by exploring the symmetry of the cloud, which allows us to reconstruct the three-dimensional momentum distributions with the inverse Abel transform. We present our analysis with both the two- and three-dimensional momentum distributions, discussing their similarities and differences. We argue that the characteristic length allows us to visualize the time evolution of the turbulent state intuitively.


Author(s):  
A. Achúcarro ◽  
A. Avgoustidis ◽  
A. López-Eiguren ◽  
C. J. A. P. Martins ◽  
J. Urrestilla

Sign in / Sign up

Export Citation Format

Share Document