Historical perspectives on protein phosphorylation and a classification system for protein kinases

Work on the phosphorylation of proteins as a dynamic process involved in the regulation of biological processes started in the 1950s with the finding that phosphorylase a and phosphorylase b are phospho and dephospho forms of the same enzyme. The field expanded sharply in the late 1960s with the discovery of the cyclic-AMP-dependent protein kinase, and it is now clear that phosphorylation-dephosphorylation constitutes a major type of regulation almost as common as allosteric control. The protein kinases, which catalyse the phosphorylation step in various phosphorylationdephosphorylation systems, can be divided into two main classes, the serine-threonine protein kinases and the tyrosine protein kinases. Each class can be subdivided into groups or entities depending on the nature of the agent(s) that regulate activity.

1980 ◽  
Vol 192 (1) ◽  
pp. 223-230 ◽  
Author(s):  
G Schwoch ◽  
A Hamann ◽  
H Hilz

An antiserum against the catalytic subunit C of cyclic AMP-dependent protein kinase, isolated from bovine heart type II protein kinase, was produced in rabbits. Reaction of the catalytic subunit with antiserum and separation of the immunoglobulin G fraction by Protein A-Sepharose quantitatively removed the enzyme from solutions. Comparative immunotitration of protein kinases showed that the amount of antiserum required to eliminate 50% of the enzymic activity was identical for pure catalytic subunit, and for holoenzymes type I and type II. The reactivity of the holoenzymes with the antiserum was identical in the absence or the presence of dissociating concentrations of cyclic AMP. Most of the holoenzyme (type II) remains intact when bound to the antibodies as shown by quantification of the regulatory subunit in the supernatant of the immunoprecipitate. Titration with the antibodies also revealed the presence of a cyclic AMP-independent histone kinase in bovine heart protein kinase I preparations obtained by DEAE-cellulose chromatography. Cyclic AMP-dependent protein kinase purified from the particulate fraction of bovine heart reacted with the antiserum to the same degree as the soluble enzyme, whereas two cyclic AMP-independent kinases separated from the particle fraction neither reacted with the antiserum nor influenced the reaction of the antibodies with the cyclic AMP-dependent protein kinase. Immunotitration of the protein kinase catalytic subunit C from rat liver revealed that the antibodies had rather similar reactivities towards the rat liver and the bovine heart enzyme. This points to a relatively high degree of homology of the catalytic subunit in mammalian tissues and species. Broad applicability of the antiserum to problems related to cyclic AMP-dependent protein kinases is thus indicated.


1980 ◽  
Vol 87 (2) ◽  
pp. 336-345 ◽  
Author(s):  
C L Browne ◽  
A H Lockwood ◽  
J L Su ◽  
J A Beavo ◽  
A L Steiner

Cyclic nucleotides and cyclic nucleotide-dependent protein kinases have been implicated in the regulation of cell motility and division, processes that depend on the cell cytoskeleton. To determine whether cyclic nucleotides or their kinases are physically associated with the cytoskeleton during cell division, fluorescently labeled antibodies directed against cyclic AMP, cyclic GMP, and the cyclic nucleotide-dpendent protein kinases were used to localize these molecules in mitotic PtK1 cells. Both the cyclic GMP-dependent protein kinase and the type II regulatory subunit of the cyclic AMP-dependent protein kinase were localized on the mitotic spindle. Throughout mitosis, their distribution closely resembled that of tubulin. Antibodies to cyclic AMP, cyclic GMP, and the type I regulatory and catalytic subunits of the cyclic AMP-dependent protein kinase did not label the mitotic apparatus. The association between specific components of the cyclic neucleotide system and the mitotic spindle suggests that cyclic nucleotide-dependent phosphorylation of spindle proteins, such as those of microtubules, may play a fundamental role in the regulation of spindle assembly and chromosome motion.


1983 ◽  
Vol 213 (1) ◽  
pp. 159-164 ◽  
Author(s):  
D B Glass

The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.


1990 ◽  
Vol 270 (1) ◽  
pp. 181-188 ◽  
Author(s):  
G Schwoch ◽  
B Trinczek ◽  
C Bode

Observation and quantification of the catalytic subunit C of cyclic AMP-dependent protein kinases by immuno-gold electron microscopy suggested a high concentration of cyclic AMP-dependent protein kinases in mitochondria from liver, kidney, heart and skeletal muscle, pancreas, parotid gland and brain cells. The position of gold particles pointed to a localization in the inner membrane/matrix space. A similar distribution was obtained by immunolocalization of the cyclic AMP-dependent protein kinase regulatory subunits RI and RII in liver, pancreas and heart cells. The results indicated the presence of both the type I and the type II cyclic AMP-dependent protein kinases in mitochondria of hepatocytes, and the preferential occurrence of the type I protein kinase in mitochondria from exocrine pancreas and heart muscle. The immunocytochemical results were confirmed by immunochemical determination of cyclic AMP-dependent protein kinase subunits in fractionated tissues. Determinations by e.l.i.s.a. of the C-subunit in parotid gland cell fractions indicated about a 4-fold higher concentration of C-subunit in the mitochondria than in a crude 1200 g supernatant. Immunoblot analysis of subfractions from liver mitochondria supported the localization in situ of cyclic AMP-dependent protein kinases in the inner membrane/matrix space and suggested that the type I enzyme is anchored by its regulatory subunit to the inner membrane. In accordance with the immunoblot data, the specific activity of cyclic AMP-dependent protein kinase measured in the matrix fraction was about twice that measured in whole mitochondria. These findings indicate the importance of cyclic AMP-dependent protein kinases in the regulation of mitochondrial functions.


1984 ◽  
Vol 259 (1) ◽  
pp. 654-661 ◽  
Author(s):  
I H Majerfeld ◽  
B H Leichtling ◽  
J A Meligeni ◽  
E Spitz ◽  
H V Rickenberg

Sign in / Sign up

Export Citation Format

Share Document