Molecular mechanisms of virus-mediated cytopathology

Lytic virus infections of animal cells usually lead to a variety of morphological and biochemical lesions that include inhibition of cellular macromolecular syntheses. These cytopathic effects vary in intensity for different virus-cell combinations and probably involve several overlapping mechanisms. Inhibition may be mediated by components of parental virions or require viral gene expression. In many infected cell systems the initiation of host protein synthesis is selectively blocked. This shut-off phenomenon can result from changes in membrane permeability that alter the intracellular ionic environment in favour of viral expression, successful competition of viral mRNAs for limited translational components, or a decrease in the level of cell mRNAs by inhibition of synthesis or nucleocytoplasmic transport. However, the early onset and rapidity of virus-induced inhibition, sometimes under non-permissive conditions, implies more direct mechanisms of translational inactivation. These include enhanced degradation of cellular mRNAs or specific modification of the translation apparatus in infected cells. A dramatic example of the latter occurs in poliovirus-infected HeLa cells in which intact, functional cellular mRNA persists but host protein synthesis is almost completely inhibited. The virus-induced defect is apparently related to inactivation of a protein factor that binds to the 5' end of m7G-capped mRNAs and is required for translation of host (capped) mRNAs but not for the expression of poliovirus RNA, which is not capped. This process and other possible molecular mechanisms of virus-mediated cytopathology are discussed.

2021 ◽  
Author(s):  
Jessica K. Peters ◽  
Ryan W. Tibble ◽  
Marcin Warminski ◽  
Jacek Jemielity ◽  
John D. Gross

SUMMARYPoxviruses encode decapping enzymes that remove the protective 5’ cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral dsRNA, a trigger for antiviral responses. Here we present the first high resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a novel domain organization in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5’ mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap binding proteins VP39, eIF4E, and CBP20 and distinct from eukaryotic decapping enzyme Dcp2.


2019 ◽  
Vol 295 (6) ◽  
pp. 1694-1703
Author(s):  
Mélissanne de Wispelaere ◽  
Margot Carocci ◽  
Dominique J. Burri ◽  
William J. Neidermyer ◽  
Calla M. Olson ◽  
...  

Small-molecule inhibitors of translation are critical tools to study the molecular mechanisms of protein synthesis. In this study, we sought to characterize how QL47, a host-targeted, small-molecule antiviral agent, inhibits steady-state viral protein expression. We demonstrate that this small molecule broadly inhibits both viral and host protein synthesis and targets a translation step specific to eukaryotic cells. We show that QL47 inhibits protein neosynthesis initiated by both canonical cap-driven and noncanonical initiation strategies, most likely by targeting an early step in translation elongation. Our findings thus establish QL47 as a new small-molecule inhibitor that can be utilized to probe the eukaryotic translation machinery and that can be further developed as a new therapeutic agent.


2002 ◽  
Vol 76 (15) ◽  
pp. 7578-7586 ◽  
Author(s):  
Bodil Øster ◽  
Per Höllsberg

ABSTRACT Herpesvirus gene expression is divided into immediate-early (IE) or α genes, early (E) or β genes, and late (L) or γ genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.


1982 ◽  
Vol 2 (12) ◽  
pp. 1644-1648 ◽  
Author(s):  
S. C. Inglis

Cloned DNA copies of two cellular genes were used to monitor, by blot hybridization, the stability of particular cell mRNAs after infection by influenza virus and herpesvirus. The results indicated that the inhibition of host cell protein synthesis that accompanied infection by each virus could be explained by a reduction in the amounts of cellular mRNAs in the cytoplasm, and they suggested that this decrease was due to virus-mediated mRNA degradation.


Virology ◽  
1989 ◽  
Vol 168 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Robert P. O'Malley ◽  
Roger F. Duncan ◽  
John W.B. Hershey ◽  
Michael B. Mathews

1996 ◽  
Vol 7 (7) ◽  
pp. 1137-1151 ◽  
Author(s):  
L Rebelo ◽  
F Almeida ◽  
C Ramos ◽  
K Bohmann ◽  
A I Lamond ◽  
...  

The coiled body is a specific intranuclear structure of unknown function that is enriched in splicing small nuclear ribonucleoproteins (snRNPs). Because adenoviruses make use of the host cell-splicing machinery and subvert the normal subnuclear organization, we initially decided to investigate the effect of adenovirus infection on the coiled body. The results indicate that adenovirus infection induces the disassembly of coiled bodies and that this effect is probably secondary to the block of host protein synthesis induced by the virus. Furthermore, coiled bodies are shown to be very labile structures, with a half-life of approximately 2 h after treatment of HeLa cells with protein synthesis inhibitors. After blocking of protein synthesis, p80 coilin was detected in numerous microfoci that do not concentrate snRNP. These structures may represent precursor forms of the coiled body, which goes through a rapid cycle of assembly/disassembly in the nucleus and requires ongoing protein synthesis to reassemble.


Sign in / Sign up

Export Citation Format

Share Document