Natural selection at the class II major histocompatibility complex loci of mammals

1994 ◽  
Vol 346 (1317) ◽  
pp. 359-367 ◽  

The role of natural selection at major histocompatibility complex (MHC) loci was studied by analysis of molecular sequence data from mammalian class II MHC loci. As found previously for the class I MHC molecule and a hypothetical model of the class II molecule, the rate of non-synonymous nucleotide substitution exceeded that of synonymous substitution in the codons encoding the antigen recognition site of polymorphic class II molecules. This pattern is evidence that the polymorphism at these loci is maintained by a form of balancing selection, such as overdominant selection. By contrast, in the case of monomorphic class II loci, no such enhancement of the rate of non-synonymous substitution was observed. Phylogenetic analysis indicates that, in contrast to monomorphic (‘non-classical’) class I MHC loci, some monomorphic class II loci of mammals are quite ancient. The DMA and DMB loci, for example, diverged before all other known mammalian class II loci, possibly before the divergence of tetrapods from bony fishes. Analysis of the patterns of sharing of polymorphic residues at class II MHC loci by mammals of different species revealed that extensive convergent evolution has occurred at these loci; but no support was found for the hypothesis that MHC polymorphisms have been maintained since before the divergence of orders of eutherian mammals.

1994 ◽  
Vol 179 (6) ◽  
pp. 1997-2004 ◽  
Author(s):  
E Robey ◽  
A Itano ◽  
W C Fanslow ◽  
B J Fowlkes

Although mature CD4+ T cells bear T cell receptors (TCRs) that recognize class II major histocompatibility complex (MHC) and mature CD8+ T cells bear TCRs that recognize class I MHC, it is possible that the initial commitment of an immature thymocyte to a CD4 or CD8 lineage is made without regard to the specificity of the TCR. According to this model, CD4+ cells with class I TCR do not mature because the CD8 coreceptor is required for class I MHC recognition and positive selection. If this model is correct, constitutive expression of CD8 should allow CD4+ T cells with class I-specific TCRs to develop. In this report, we show that mature peripheral CD4+ cells are present in class II MHC-deficient mice that express a constitutive CD8.1 transgene. These cells share a number of properties with the major class II MHC-selected CD4 population, including the ability to express CD40 ligand upon activation. Although mature CD4 cells are also detectable in the thymus of class II MHC mutant/CD8.1 transgenic mice, they represent a small fraction of the mature CD4 cells found in mice that express class II MHC. These results indicate that some T cells choose the CD4 helper lineage independent of their antigen receptor specificity; however, the inefficiency of generating class I-specific CD4 cells leaves open the possibility that an instructive signal generated upon MHC recognition may bias lineage commitment.


Genetica ◽  
2017 ◽  
Vol 145 (6) ◽  
pp. 541-558
Author(s):  
Drashti R. Parmar ◽  
Siuli Mitra ◽  
Snehalata Bhadouriya ◽  
Tirupathi Rao ◽  
Vaishnavi Kunteepuram ◽  
...  

2017 ◽  
Author(s):  
Matthew R. Semler ◽  
Roger W. Wiseman ◽  
Julie A. Karl ◽  
Michael E. Graham ◽  
Samantha M. Gieger ◽  
...  

AbstractPig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to inferMane-AandMane-Bhaplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313Mane-A,Mane-B, andMane-Isequences that defined 86Mane-Aand 106Mane-BMHC-I haplotypes. Pacific Biosciences technology allows us to resolve theseMane-AandMane-Bhaplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.


1988 ◽  
Vol 45 (5) ◽  
pp. 972-978 ◽  
Author(s):  
A. AHMED-ANSARI ◽  
TALAAT S. TADROS ◽  
WILLIAM D. KNOPF ◽  
DOUGLAS A. MURPHY ◽  
GARY HERTZLER ◽  
...  

1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


1998 ◽  
Vol 72 (1) ◽  
pp. 460-466 ◽  
Author(s):  
Tara L. Chapman ◽  
Pamela J. Bjorkman

ABSTRACT Both human and murine cytomegaloviruses (HCMV and MCMV) down-regulate expression of conventional class I major histocompatibility complex (MHC) molecules at the surfaces of infected cells. This allows the infected cells to evade recognition by cytotoxic T cells but leaves them susceptible to natural killer cells, which lyse cells that lack class I molecules. Both HCMV and MCMV encode class I MHC heavy-chain homologs that may function in immune response evasion. We previously showed that a soluble form of the HCMV class I homolog (UL18) expressed in Chinese hamster ovary cells binds the class I MHC light-chain β2-microglobulin and a mixture of endogenous peptides (M. L. Fahnestock, J. L. Johnson, R. M. R. Feldman, J. M. Neveu, W. S. Lane, and P. J. Bjorkman, Immunity 3:583–590, 1995). Consistent with this observation, sequence comparisons suggest that UL18 contains the well-characterized groove that serves as the binding site in MHC molecules for peptides derived from endogenous and foreign proteins. By contrast, the MCMV homolog (m144) contains a substantial deletion within the counterpart of its α2 domain and might not be expected to contain a groove capable of binding peptides. We have now expressed a soluble version of m144 and verified that it forms a heavy chain–β2-microglobulin complex. By contrast to UL18 and classical class I MHC molecules, m144 does not associate with endogenous peptides yet is thermally stable. These results suggest that UL18 and m144 differ structurally and might therefore serve different functions for their respective viruses.


2012 ◽  
Vol 513 (2) ◽  
pp. 223-228 ◽  
Author(s):  
Rodrigo Fabrizzio Inácio ◽  
Renata Graciele Zanon ◽  
Liana Verinaud ◽  
Alexandre Leite Rodrigues de Oliveira

Sign in / Sign up

Export Citation Format

Share Document