scholarly journals Bringing together emerging and endemic zoonoses surveillance: shared challenges and a common solution

2012 ◽  
Vol 367 (1604) ◽  
pp. 2872-2880 ◽  
Author(s):  
Jo Halliday ◽  
Chris Daborn ◽  
Harriet Auty ◽  
Zacharia Mtema ◽  
Tiziana Lembo ◽  
...  

Early detection of disease outbreaks in human and animal populations is crucial to the effective surveillance of emerging infectious diseases. However, there are marked geographical disparities in capacity for early detection of outbreaks, which limit the effectiveness of global surveillance strategies. Linking surveillance approaches for emerging and neglected endemic zoonoses, with a renewed focus on existing disease problems in developing countries, has the potential to overcome several limitations and to achieve additional health benefits. Poor reporting is a major constraint to the surveillance of both emerging and endemic zoonoses, and several important barriers to reporting can be identified: (i) a lack of tangible benefits when reports are made; (ii) a lack of capacity to enforce regulations; (iii) poor communication among communities, institutions and sectors; and (iv) complexities of the international regulatory environment. Redirecting surveillance efforts to focus on endemic zoonoses in developing countries offers a pragmatic approach that overcomes some of these barriers and provides support in regions where surveillance capacity is currently weakest. In addition, this approach addresses immediate health and development problems, and provides an equitable and sustainable mechanism for building the culture of surveillance and the core capacities that are needed for all zoonotic pathogens, including emerging disease threats.

Heliyon ◽  
2021 ◽  
pp. e07184
Author(s):  
Tunde Adebisi ◽  
Ayooluwa Aregbesola ◽  
Festus Asamu ◽  
Ogadimma Arisukwu ◽  
Eyitayo Oyeyipo

10.2196/19589 ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. e19589
Author(s):  
Wenjun Wang ◽  
Yikai Wang ◽  
Xin Zhang ◽  
Xiaoli Jia ◽  
Yaping Li ◽  
...  

Background A novel coronavirus, SARS-CoV-2, was identified in December 2019, when the first cases were reported in Wuhan, China. The once-localized outbreak has since been declared a pandemic. As of April 24, 2020, there have been 2.7 million confirmed cases and nearly 200,000 deaths. Early warning systems using new technologies should be established to prevent or mitigate such events in the future. Objective This study aimed to explore the possibility of detecting the SARS-CoV-2 outbreak in 2019 using social media. Methods WeChat Index is a data service that shows how frequently a specific keyword appears in posts, subscriptions, and search over the last 90 days on WeChat, the most popular Chinese social media app. We plotted daily WeChat Index results for keywords related to SARS-CoV-2 from November 17, 2019, to February 14, 2020. Results WeChat Index hits for “Feidian” (which means severe acute respiratory syndrome in Chinese) stayed at low levels until 16 days ahead of the local authority’s outbreak announcement on December 31, 2019, when the index increased significantly. The WeChat Index values persisted at relatively high levels from December 15 to 29, 2019, and rose rapidly on December 30, 2019, the day before the announcement. The WeChat Index hits also spiked for the keywords “SARS,” “coronavirus,” “novel coronavirus,” “shortness of breath,” “dyspnea,” and “diarrhea,” but these terms were not as meaningful for the early detection of the outbreak as the term “Feidian”. Conclusions By using retrospective infoveillance data from the WeChat Index, the SARS-CoV-2 outbreak in December 2019 could have been detected about two weeks before the outbreak announcement. WeChat may offer a new approach for the early detection of disease outbreaks.


2001 ◽  
Vol 7 (6) ◽  
pp. 51-59 ◽  
Author(s):  
Michael M. Wagner ◽  
Fu-Chiang Tsui ◽  
Jeremy U. Espino ◽  
Virginia M. Dato ◽  
Dean F. Sitting ◽  
...  

2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Martin N. Mayanja ◽  
Frank N. Mwiine ◽  
Julius J. Lutwama ◽  
Alfred Ssekagiri ◽  
Moses Egesa ◽  
...  

Mosquito-transmitted arboviruses constitute a large proportion of emerging infectious diseases that are both a public health problem and a threat to animal populations. Many such viruses were identified in East Africa, a region where they remain important and from where new arboviruses may emerge. We set out to describe and review the relevant mosquito-borne viruses that have been identified specifically in Uganda. We focused on the discovery, burden, mode of transmission, animal hosts and clinical manifestation of those previously involved in disease outbreaks. A search for mosquito-borne arboviruses detected in Uganda was conducted using search terms ‘Arboviruses in Uganda’ and ‘Mosquitoes and Viruses in Uganda’ in PubMed and Google Scholar in 2020. Twenty-four mosquito-borne viruses from different animal hosts, humans and mosquitoes were documented. The majority of these were from family Peribunyaviridae, followed by Flaviviridae, Togaviridae, Phenuiviridae and only one each from family Rhabdoviridae and Reoviridae. Sixteen (66.7%) of the viruses were associated with febrile illnesses. Ten (41.7%) of them were first described locally in Uganda. Six of these are a public threat as they have been previously associated with disease outbreaks either within or outside Uganda. Historically, there is a high burden and endemicity of arboviruses in Uganda. Given the many diverse mosquito species known in the country, there is also a likelihood of many undescribed mosquito-borne viruses. Next generation diagnostic platforms have great potential to identify new viruses. Indeed, four novel viruses, two of which were from humans (Ntwetwe and Nyangole viruses) and two from mosquitoes (Kibale and Mburo viruses) were identified in the last decade using next generation sequencing. Given the unbiased approach of detection of viruses by this technology, its use will undoubtedly be critically important in the characterization of mosquito viromes which in turn will inform other diagnostic efforts.


2020 ◽  
Author(s):  
Wenjun Wang ◽  
Yikai Wang ◽  
Xin Zhang ◽  
Xiaoli Jia ◽  
Yaping Li ◽  
...  

BACKGROUND A novel coronavirus, SARS-CoV-2, was identified in December 2019, when the first cases were reported in Wuhan, China. The once-localized outbreak has since been declared a pandemic. As of April 24, 2020, there have been 2.7 million confirmed cases and nearly 200,000 deaths. Early warning systems using new technologies should be established to prevent or mitigate such events in the future. OBJECTIVE This study aimed to explore the possibility of detecting the SARS-CoV-2 outbreak in 2019 using social media. METHODS WeChat Index is a data service that shows how frequently a specific keyword appears in posts, subscriptions, and search over the last 90 days on WeChat, the most popular Chinese social media app. We plotted daily WeChat Index results for keywords related to SARS-CoV-2 from November 17, 2019, to February 14, 2020. RESULTS WeChat Index hits for “Feidian” (which means severe acute respiratory syndrome in Chinese) stayed at low levels until 16 days ahead of the local authority’s outbreak announcement on December 31, 2019, when the index increased significantly. The WeChat Index values persisted at relatively high levels from December 15 to 29, 2019, and rose rapidly on December 30, 2019, the day before the announcement. The WeChat Index hits also spiked for the keywords “SARS,” “coronavirus,” “novel coronavirus,” “shortness of breath,” “dyspnea,” and “diarrhea,” but these terms were not as meaningful for the early detection of the outbreak as the term “Feidian”. CONCLUSIONS By using retrospective infoveillance data from the WeChat Index, the SARS-CoV-2 outbreak in December 2019 could have been detected about two weeks before the outbreak announcement. WeChat may offer a new approach for the early detection of disease outbreaks.


2021 ◽  
Vol 102 (6) ◽  
Author(s):  
Martin N. Mayanja ◽  
Frank N. Mwiine ◽  
Julius J. Lutwama ◽  
Alfred Ssekagiri ◽  
Moses Egesa ◽  
...  

Mosquito-transmitted arboviruses constitute a large proportion of emerging infectious diseases that are both a public health problem and a threat to animal populations. Many such viruses were identified in East Africa, a region where they remain important and from where new arboviruses may emerge. We set out to describe and review the relevant mosquito-borne viruses that have been identified specifically in Uganda. We focused on the discovery, burden, mode of transmission, animal hosts and clinical manifestation of those previously involved in disease outbreaks. A search for mosquito-borne arboviruses detected in Uganda was conducted using search terms ‘Arboviruses in Uganda’ and ‘Mosquitoes and Viruses in Uganda’ in PubMed and Google Scholar in 2020. Twenty-four mosquito-borne viruses from different animal hosts, humans and mosquitoes were documented. The majority of these were from family Peribunyaviridae, followed by Flaviviridae, Togaviridae, Phenuiviridae and only one each from family Rhabdoviridae and Reoviridae. Sixteen (66.7 %) of the viruses were associated with febrile illnesses. Ten (41.7 %) of them were first described locally in Uganda. Six of these are a public threat as they have been previously associated with disease outbreaks either within or outside Uganda. Historically, there is a high burden and endemicity of arboviruses in Uganda. Given the many diverse mosquito species known in the country, there is also a likelihood of many undescribed mosquito-borne viruses. New generation diagnostic platforms have great potential to identify new viruses. Indeed, four novel viruses, two of which were from humans (Ntwetwe and Nyangole viruses) and two from mosquitoes (Kibale and Mburo viruses) including the 2010 yellow fever virus (YFV) outbreak were identified in the last decade using next generation sequencing. Given the unbiased approach of detection of viruses by this technology, its use will undoubtedly be critically important in the characterization of mosquito viromes which in turn will inform other diagnostic efforts.


Sign in / Sign up

Export Citation Format

Share Document