scholarly journals Modularity and intra-floral integration in metameric organisms: plants are more than the sum of their parts

2014 ◽  
Vol 369 (1649) ◽  
pp. 20130253 ◽  
Author(s):  
Pamela K. Diggle

Within-individual variation in virtually every conceivable morphological and functional feature of reiterated structures is a pervasive feature of plant phenotypes. In particular, architectural effects, regular, repeatable patterns of intra-individual variation in form and function that are associated with position are nearly ubiquitous. Yet, flowers also are predicted to be highly integrated. For animal-pollinated plants, the coordination of multiple organs within each flower is required to achieve the complex functions of pollinator attraction and orientation, pollen donation and pollen receipt. To the extent that pollinators may select for multiple independent functions, phenotypic integration within flowers may also be modular. That is, subsets of floral structures may be integrated but vary independently of other subsets of structures that are themselves integrated. How can phenotypic integration and modularity be understood within the context of architectural effects? This essay reviews recent research on patterns of floral integration and modularity and explores the potential for spatial and temporal changes in the selective environment of individual flowers to result in positional variation in patterns of morphological integration.

2001 ◽  
Vol 157 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Christian Peter Klingenberg ◽  
Alexander V. Badyaev ◽  
Susanna M. Sowry ◽  
Nathan J. Beckwith

2018 ◽  
Author(s):  
Yoland Savriama ◽  
Sylvain Gerber

AbstractSymmetry is a pervasive feature of organismal shape and the focus of a large body of research in Biology. Here, we consider complex patterns of symmetry where a phenotype exhibits a hierarchically structured combination of symmetries. We extend the Procrustes ANOVA for the analysis of nested symmetries and the decomposition of the overall morphological variation into components of symmetry (among-individual variation) and asymmetry (directional and fluctuating asymmetry). We illustrate its use with the Aristotle’s lantern, the masticatory apparatus of ‘regular’ sea urchins, a complex organ displaying bilateral symmetry nested within five-fold rotational symmetry. Our results highlight the importance of characterising the full symmetry of a structure with nested symmetries. Higher order rotational symmetry appears strongly constrained and developmentally stable compared to lower level bilateral symmetry. This contrast between higher and lower levels of asymmetry is discussed in relation to the spatial pattern of the lantern morphogenesis. This extended framework is applicable to any biological object exhibiting nested symmetries, regardless of their type (e.g., bilateral, rotational, translational). Such cases are extremely widespread in animals and plants, from arthropod segmentation to angiosperm inflorescence and corolla shape. The method therefore widens the research scope on developmental instability, canalization, developmental modularity and morphological integration.


Paleobiology ◽  
2013 ◽  
Vol 39 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Erin E. Maxwell ◽  
T. Alexander Dececchi

Understanding morphological integration is one of the central goals of evolutionary developmental biology. Despite its applicability to questions of paleontological interest, there are few studies on integration in fossil vertebrates. In this study, we examine limb integration in the Lower Jurassic ichthyosaurStenopterygius quadriscissus, with the aim of examining the effect of ontogeny and anagenetic changes over short geological time spans on metrics of limb integration. Both ontogenetic and stratigraphic effects had a significant influence on measured values of integration, the identity of strongly integrated elements, and some common ratio values such as the relative integration of the forelimb to the hind limb, or within-limb to between-limb integration. Ontogenetic effects were relatively greater, although this could be linked to sample size. Although adults showed the lowest levels of overall integration, they possessed high levels of integration between serially homologous elements, something that was unexpected due to strong divergence in limb size and perhaps functional differences in derived ichthyosaurs. Ontogenetic differences in the relative integration of the forelimb to the hind limb are probably related to early locomotor demands on the forelimb. We conclude that if samples are pooled, the resulting pattern of integration may not reflect any one subsample but will be a composite created through the superposition of several variables. Pooling data in paleontological studies of integration has a non-trivial effect on the results obtained.


2019 ◽  
Vol 15 (9) ◽  
pp. 20190406 ◽  
Author(s):  
Alberto Martín-Serra ◽  
Olga Nanova ◽  
Ceferino Varón-González ◽  
Germán Ortega ◽  
Borja Figueirido

Phenotypic integration and modularity influence morphological disparity and evolvability. However, studies addressing how morphological integration and modularity change for long periods of genetic isolation are scarce. Here, we investigate patterns of phenotypic integration and modularity in the skull of phenotypically and genetically distinct populations of the Artic fox ( Vulpes lagopus ) from the Commander Islands of the Aleutian belt (i.e. Bering and Mednyi) that were isolated ca 10 000 years by ice-free waters of the Bering sea. We use three-dimensional geometric morphometrics to quantify the strength of modularity and integration from inter-individual variation (static) and from fluctuating asymmetry (random developmental variation) in both island populations compared to the mainland population (i.e. Chukotka) and we investigated how changes in morphological integration and modularity affect disparity and the directionality of trait divergence. Our results indicate a decrease in morphological integration concomitant to an increase in disparity at a developmental level, from mainland to the smallest and farthest population of Mednyi. However, phenotypic integration is higher in both island populations accompanied by a reduction in disparity compared to the population of mainland at a static level. This higher integration may have favoured morphological adaptive changes towards specific feeding behaviours related to the extreme environmental settings of islands. Our study demonstrates how shifts in phenotypic integration and modularity can facilitate phenotypic evolvability at the intraspecific level that may lead to lineage divergence at macroevolutioanry scales.


1971 ◽  
Vol 60 (3) ◽  
pp. 427-430 ◽  
Author(s):  
J. R. Linley ◽  
G. M. Adams

Sperm-transfer in Culicoides melleus (Coq.) is achieved by means of an intermediary spermatophore. The form of the spermatophore, only the second to be observed in a species of Culicoides, is described and illustrated. Though generally similar to others reported in Diptera, the spermatophore of C. melleus is distinguished by the presence of a long neck attached to the main capsule. Formation of the spermatophore occurs after sexual union has been achieved, and throughout mating the capsule remains held in the male apparatus. The distinguishing functional feature is that the entire length of the neck lies within the common duct of the spermathecae. The presence of an appendage of the spermatophore inside the spermathecal duct is a hitherto unknown phenomenon in Nematocera.


2018 ◽  
Vol 31 (7) ◽  
pp. 944-956
Author(s):  
Raphaël Royauté ◽  
Elisabeth S. Wilson ◽  
Bryan R. Helm ◽  
Rachel E. Mallinger ◽  
Jarrad Prasifka ◽  
...  

2018 ◽  
Vol 45 (10) ◽  
pp. 983 ◽  
Author(s):  
Elena V. Voznesenskaya ◽  
Nuria K. Koteyeva ◽  
Asaph Cousins ◽  
Gerald E. Edwards

Photosynthesis in different organs of Cleome was analysed in four species known to have differences in leaf photosynthesis: Cleome africana Botsch. (C3), Cleome paradoxa R.Br. (C3-C4 intermediate), Cleome angustifolia Forssk. and Cleome gynandra L. (C4). The chlorophyll content, carbon isotope composition, stomatal densities, anatomy, levels and compartmentation of some key photosynthetic enzymes, and the form and function of photosynthesis were determined in different organs of these species. In the three xerophytes, C. africana, C. paradoxa, and C. angustifolia, multiple organs contribute to photosynthesis (cotyledons, leaves, petioles, stems and pods) which is considered important for their survival under arid conditions. In C. africana, all photosynthetic organs have C3 photosynthesis. In C. paradoxa, cotyledons, leaves, stems and petioles have C3-C4 type features. In C. angustifolia, the pods have C3 photosynthesis, whereas all other organs have C4 photosynthesis with Kranz anatomy formed by a continuous, dual layer of chlorenchyma cells. In the subtropical C4 species C. gynandra, cotyledons, leaves, and pods develop C4 photosynthesis, with Kranz anatomy around individual veins; but not in stems and petioles which have limited function of photosynthesis. The diversity in forms and the capacity of photosynthesis in organs of these species to contribute to their carbon economy is discussed.


2020 ◽  
Vol 16 (5) ◽  
pp. 20200124 ◽  
Author(s):  
Zachariah Wylde ◽  
Russell Bonduriansky

The spectacular diversity of insect male genitalia, and their relative insensitivity to the environment, have long puzzled evolutionary biologists and taxonomists. We asked whether the unusual evolvability of male genitalia could be associated with low morphological integration of genitalic traits, by comparison with male somatic traits and female traits. We also asked whether this pattern was robust to variation in resource availability during development, which affects adult condition. To address these questions, we manipulated larval diet quality in a split-brood design and compared levels of integration of male and female genitalic and somatic traits in the neriid fly, Telostylinus angusticollis . We found that male genitalic traits were substantially less integrated than male somatic traits, and less integrated than female genitalic traits. Female genitalic traits were also less integrated than female somatic traits, but the difference was less pronounced than in males. However, integration of male genitalic traits was negatively condition-dependent, with high-condition males exhibiting lower trait integration than low-condition males. Finally, genitalic traits exhibited lower larval diet × family interactions than somatic traits. These results could help explain the unusually high evolvability of male genitalic traits in insects.


2020 ◽  
Vol 69 (5) ◽  
pp. 863-883 ◽  
Author(s):  
Ceferino Varón-González ◽  
Simon Whelan ◽  
Christian Peter Klingenberg

Abstract In recent years, there has been controversy whether multidimensional data such as geometric morphometric data or information on gene expression can be used for estimating phylogenies. This study uses simulations of evolution in multidimensional phenotype spaces to address this question and to identify specific factors that are important for answering it. Most of the simulations use phylogenies with four taxa, so that there are just three possible unrooted trees and the effect of different combinations of branch lengths can be studied systematically. In a comparison of methods, squared-change parsimony performed similarly well as maximum likelihood, and both methods outperformed Wagner and Euclidean parsimony, neighbor-joining and UPGMA. Under an evolutionary model of isotropic Brownian motion, phylogeny can be estimated reliably if dimensionality is high, even with relatively unfavorable combinations of branch lengths. By contrast, if there is phenotypic integration such that most variation is concentrated in one or a few dimensions, the reliability of phylogenetic estimates is severely reduced. Evolutionary models with stabilizing selection also produce highly unreliable estimates, which are little better than picking a phylogenetic tree at random. To examine how these results apply to phylogenies with more than four taxa, we conducted further simulations with up to eight taxa, which indicated that the effects of dimensionality and phenotypic integration extend to more than four taxa, and that convergence among internal nodes may produce additional complications specifically for greater numbers of taxa. Overall, the simulations suggest that multidimensional data, under evolutionary models that are plausible for biological data, do not produce reliable estimates of phylogeny. [Brownian motion; gene expression data; geometric morphometrics; morphological integration; squared-change parsimony; phylogeny; shape; stabilizing selection.]


Sign in / Sign up

Export Citation Format

Share Document