scholarly journals Aeromonas enteropelogenes and Aeromonas ichthiosmia Are Identical to Aeromonas trota and Aeromonas veronii, Respectively, as Revealed by Small-Subunit rRNA Sequence Analysis

1993 ◽  
Vol 43 (4) ◽  
pp. 855-856 ◽  
Author(s):  
M. D. COLLINS ◽  
A. J. MARTINEZ-MURCIA ◽  
J. CAI
2000 ◽  
Vol 66 (12) ◽  
pp. 5492-5498 ◽  
Author(s):  
Lihua Xiao ◽  
Kerri Alderisio ◽  
Josef Limor ◽  
Michael Royer ◽  
Altaf A. Lal

ABSTRACT The identification of Cryptosporidium oocysts in environmental samples is largely made by the use of an immunofluorescent assay. In this study, we have used a small-subunit rRNA-based PCR-restriction fragment length polymorphism technique to identify species and sources of Cryptosporidium oocysts present in 29 storm water samples collected from a stream in New York. A total of 12 genotypes were found in 27 positive samples; for 4 the species and probable origins were identified by sequence analysis, whereas the rest represent new genotypes from wildlife. Thus, this technique provides an alternative method for the detection and differentiation of Cryptosporidium parasites in environmental samples.


2012 ◽  
Vol 57 (4) ◽  
Author(s):  
B. Nath ◽  
S. Gupta ◽  
A. Bajpai

AbstractThe life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.


2019 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Ke Wang ◽  
Azhar Gazizova ◽  
Yuexin Wang ◽  
Kaihui Zhang ◽  
Yifan Zhang ◽  
...  

Cryptosporidium is an important protozoan parasite that can cause gastrointestinal diseases in humans and that also causes respiratory and gastrointestinal diseases in birds. In this study, we investigated the occurrence of Cryptosporidium species in migratory whooper swans in China. Fecal samples (n = 467) from whooper swans were collected from Sanmenxia Swan Lake National Urban Wetland Park, China. The samples were analyzed for Cryptosporidium species and genotypes with PCR along a sequence analysis of the small subunit rRNA. Cryptosporidium was detected in eight of the 467 (1.7%) samples. The analysis of the small subunit rRNA sequence data revealed two zoonotic species (Cryptosporidium parvum and Cryptosporidium andersoni) and one genotype (Cryptosporidium goose genotype II). These are the first data on the positive rate of Cryptosporidium spp. in whooper swans in China, and they suggest that whooper swans can harbor the zoonotic species C. parvum and C. andersoni in China.


2009 ◽  
Vol 75 (24) ◽  
pp. 7692-7699 ◽  
Author(s):  
Chaochao Lv ◽  
Longxian Zhang ◽  
Rongjun Wang ◽  
Fuchun Jian ◽  
Sumei Zhang ◽  
...  

ABSTRACT To understand the prevalence of Cryptosporidium infection in rodents in China and to assess the potential role of rodents as a source for human cryptosporidiosis, 723 specimens from 18 rodent species were collected from four provinces of China and examined between August 2007 and December 2008 by microscopy after using Sheather's sugar flotation and modified acid-fast staining. Cryptosporidium oocysts were detected in 83 specimens, with an overall prevalence of 11.5%. Phodopus sungorus, Phodopus campbelli, and Rattus tanezumi were new reported hosts of Cryptosporidium. The genotypes and subtypes of Cryptosporidium strains in microscopy-positive specimens were further identified by PCR and sequence analysis of the small subunit rRNA and the 60-kDa glycoprotein (gp60) genes. In addition to Cryptosporidium parvum, C. muris, C. andersoni, C. wrairi, ferret genotype, and mouse genotype I, four new Cryptosporidium genotypes were identified, including the hamster genotype, chipmunk genotype III, and rat genotypes II and III. Mixed Cryptosporidium species/genotypes were found in 10.8% of Cryptosporidium-positive specimens. Sequence analysis of the gp60 gene showed that C. parvum strains in pet Siberian chipmunks and hamsters were all of the subtype IIdA15G1, which was found previously in a human isolate in The Netherlands and lambs in Spain. The gp60 sequences of C. wrairi and the Cryptosporidium ferret genotype and mouse genotype I were also obtained. These findings suggest that pet rodents may be potential reservoirs of zoonotic Cryptosporidium species and subtypes.


Sign in / Sign up

Export Citation Format

Share Document