genotype i
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 115)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Susanna Kar Pui Lau ◽  
Kenneth Sze Ming Li ◽  
Xin Li ◽  
Ka-Yan Tsang ◽  
Siddharth Sridhar ◽  
...  

Since its first discovery in 1967, human coronavirus OC43 (HCoV-OC43) has been associated with mild self-limiting upper respiratory infections worldwide. Fatal primary pneumonia due to HCoV-OC43 is not frequently described. This study describes a case of fatal primary pneumonia associated with HCoV-OC43 in a 75-year-old patient with good past health. The viral loads of the respiratory tract specimens (bronchoalveolar lavage and endotracheal aspirate) from diagnosis to death were persistently high (3.49 × 106–1.10 × 1010 copies/ml). HCoV-OC43 at a 6.46 × 103 copies/ml level was also detected from his pleural fluid 2 days before his death. Complete genome sequencing and phylogenetic analysis showed that the present HCoV-OC43 forms a distinct cluster with three other HCoV-OC43 from United States, with a bootstrap value of 100% and sharing 99.9% nucleotide identities. Pairwise genetic distance between this cluster and other HCoV-OC43 genotypes ranged from 0.27 ± 0.02% to 1.25 ± 0.01%. In contrast, the lowest pairwise genetic distance between existing HCoV-OC43 genotypes was 0.26 ± 0.02%, suggesting that this cluster constitutes a novel HCoV-OC43 genotype, which we named genotype I. Unlike genotypes D, E, F, G, and H, no recombination event was observed for this novel genotype. Structural modeling revealed that the loop with the S1/S2 cleavage site was four amino acids longer than other HCoV-OC43, making it more exposed and accessible to protease, which may have resulted in its possible hypervirulence.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Harapan Harapan ◽  
Alice Michie ◽  
Timo Ernst ◽  
Kritu Panta ◽  
Mudatsir Mudatsir ◽  
...  

Dengue is a mosquito-borne disease of public health concern affecting tropical and subtropical countries, including Indonesia. Although studies on dengue epidemiology have been undertaken in Indonesia, data are lacking in many areas of the country. The aim of this study was to determine dengue virus (DENV) and chikungunya virus (CHIKV) molecular epidemiology in western regions of the Indonesian archipelago. A one-year prospective study was conducted in Aceh and Jambi in 2015 and 2016, respectively, where patients with dengue-like illness were enrolled. Of 205 patients recruited, 29 and 27 were confirmed with dengue in Aceh and Jambi, respectively, and three from Jambi were confirmed with chikungunya. DENV-1 was the predominant serotype identified in Aceh while DENV-2 was predominant in Jambi. All DENV-1 and DENV-2 from both regions were classified as Genotype I and Cosmopolitan genotype, respectively, and all DENV-3 viruses from Jambi were Genotype I. Some viruses, in particular DENV-1, displayed a distinct lineage distribution, where two DENV-1 lineages from Aceh were more closely related to viruses from China instead of Jambi highlighting the role of travel and flight patterns on DENV transmission in the region. DENV-2 from both Aceh and Jambi and DENV-3 from Jambi were all closely related to Indonesian local strains. All three CHIKV belonged to Asian genotype and clustered closely with Indonesian CHIKV strains including those previously circulating in Jambi in 2015, confirming continuous and sustainable transmission of CHIKV in the region. The study results emphasize the importance of continuous epidemiological surveillance of arboviruses in Indonesia and simultaneous testing for CHIKV among dengue-suspected patients.


Author(s):  
Adeyinka Adedeji ◽  
Anvou Jambol ◽  
R. Weka ◽  
Muwanika V.B. ◽  
Pam Luka ◽  
...  

African swine fever (ASF) is the most lethal disease of pigs caused by ASF virus (ASFV) with severe economic implications and threat to food security in endemic countries. Between 2016 and 2018, several ASF outbreaks were reported throughout pig producing States in Nigeria. This study was designed to identify the ASFV genotypes responsible for these outbreaks and the transmission pathways of the virus during this period. Twenty-two ASFV-positive samples collected during passive surveillance in eight States of Nigeria were characterized using 3 partial genes sequences of the virus. The genes were: p72 capsid protein of the B646L, p54 envelope protein of E183L, and the central variable region (CVR) within B602L of ASFV. Phylogenetic analysis based on p72 and p54 revealed ASFV genotype I as the circulating virus. Sequence analysis of the CVR of B602L revealed genetic variations with six ASFV variants namely: Tet-15, Tet-20a, Tet-21b, Tet-27, Tet-31 and Tet-34, thus increasing the overall genetic diversity of ASFV in Nigeria. Three of these variants: Tet-21b, Tet-31 and Tet-34 were identified for the first time in Nigeria. The new variants of ASFV genotype I were identified in the States of Enugu, Imo, Plateau and Taraba, while co-circulation of multiple variants of ASFV genotype I were recorded in Plateau and Benue States. The high genetic diversity, emergence and increasing recovery of new variants of genotype I in Nigeria should be a concern given that ASFV is a relatively stable DNA virus. The epidemiological implications of these findings require further investigation.


Author(s):  
M. Ali ◽  
M.U.R. Khan ◽  
A. Aslam ◽  
H.U. Rehman ◽  
A. Anjum ◽  
...  

Background: This study elucidated the molecular detection and pathological alterations in broiler chickens naturally infected with field circulating NDV strains along with their phylogenomic dynamics. Methods: Morbid tissue samples of diseased/dead chickens were collected from 100 poultry flocks presented to poultry disease diagnostic laboratories from September 2018 to August 2019. Samples were subjected to molecular detection of NDV along with phylogenetic analysis and subsequent gross and histopathological examination. Result: Based on RT-PCR results, the positivity of NDV was 04/100 (4%). Genetic analysis of the NDV Fusion (F) gene revealed 98.92% and 98.74% similarity with Iranian and Pakistani isolates, respectively. The evolutionary tree showed that present study isolates were placed in a clade belongs to genotype Vll sub-genotype i and l. Necropsy examinations revealed the petechial haemorrhages associated with multifocal necrosis in gastrointestinal and respiratory organs. Besides these pathological findings, amino acid sequence of F gene revealed that study isolates are having pathogenic potential similar to the velogenic strains of NDV. Based on all essential analyses, the present study concluded that the evolution and distribution of the Newcastle disease virus of various genotypes VIIi and VIIl in Pakistan are having significant pathogenic potential. Therefore, it emphasizes developing ND vaccine from indigenous strains for better protection of commercial poultry in Pakistan.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2084
Author(s):  
Tibutius T. P. Jayadas ◽  
Thirunavukarasu Kumanan ◽  
Laksiri Gomes ◽  
Chandima Jeewandara ◽  
Gathsaurie N. Malavige ◽  
...  

Dengue is a significant health concern in Sri Lanka, but diagnosis of the infecting dengue virus (DENV) serotype has hitherto been largely restricted to the Colombo district in the western province. Salinity tolerant Aedes vectors are present in the island’s northern Jaffna peninsula, which is undergoing rapid groundwater salinization. Virus serotypes were determined by RT-qPCR in 107 and 112 patients diagnosed by NS1 antigen positivity from the Jaffna district in 2018 and 2019, respectively, and related to clinical characteristics. DENV1 and DENV2 were the most common serotypes in both years. Infections with multiple serotypes were not detected. DENV1 was significantly more prevalent in 2019 than 2018, while DENV3 was significantly more prevalent in 2018 than 2019 among the Jaffna patients. Limited genomic sequencing identified DENV1 genotype-I and DENV3 genotype-I in Jaffna patients in 2018. Dengue was more prevalent in working age persons and males among the serotyped Jaffna patients. DENV1 and DENV2 were the predominant serotypes in 2019 in the Colombo district. However, DENV1 and DENV3 were significantly more prevalent in Colombo compared with Jaffna in 2019. The differences in the prevalence of DENV1 and DENV3 between the Jaffna and Colombo districts in 2019 have implications for dengue epidemiology and vaccination. Salinity-tolerant Aedes vector strains, widespread in the Jaffna peninsula, may have contributed to differences in serotype prevalence compared with the Colombo district in 2019. Significant associations were not identified between virus serotypes and clinical characteristics among Jaffna patients.


2021 ◽  
Vol 9 (11) ◽  
pp. 2263
Author(s):  
Elodie Calvez ◽  
Phaithong Bounmany ◽  
Charlotte Balière ◽  
Somphavanh Somlor ◽  
Souksakhone Viengphouthong ◽  
...  

Since its first detection in 1979, dengue fever has been considered a major public health issue in the Lao People’s Democratic Republic (PDR). Dengue virus (DENV) serotype 1 was the cause of an epidemic in 2010–2011. Between 2012 and 2020, major outbreaks due successively to DENV-3, DENV-4 and recently DENV-2 have been recorded. However, DENV-1 still co-circulated in the country over this period. Here, we summarize epidemiological and molecular data of DENV-1 between 2016 and 2020 in the Lao PDR. Our data highlight the continuous circulation of DENV-1 in the country at levels ranging from 16% to 22% among serotyping tests. In addition, the phylogenetic analysis has revealed the circulation of DENV-1 genotype I at least since 2008 with a co-circulation of different clusters. Sequence data support independent DENV-1 introductions in the Lao PDR correlated with an active circulation of this serotype at the regional level in Southeast Asia. The maintenance of DENV-1 circulation over the last ten years supports a low level of immunity against this serotype within the Lao population. Thereby, the risk of a DENV-1 epidemic cannot be ruled out in the future, and this emphasizes the importance of maintaining an integrated surveillance approach to prevent major outbreaks.


Author(s):  
Encheng Sun ◽  
Lianyu Huang ◽  
Xianfeng Zhang ◽  
Jiwen Zhang ◽  
Dongdong Shen ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2145
Author(s):  
Mariangela Stefania Fiori ◽  
Luca Ferretti ◽  
Matteo Floris ◽  
Federica Loi ◽  
Antonello Di Nardo ◽  
...  

African swine fever virus (ASFV) is one of the pathogens of highest concern worldwide. Despite different virus lineages co-circulating in several areas, dual infections in the same animal have been rarely observed, suggesting that ASF superinfections are infrequent events. Here we present the first genome-wide detection and analysis of two intragenotype dual ASFV infections. The dual infections have been detected in a hunted wild boar and in a pig carcass, both infected by ASFV genotype I in Sardinia in 1984 and 2018, respectively. We characterize the genetic differences between the two sequences, their intra-host frequency, and their phylogenetic relationship among fully sequenced ASFV strains from Sardinia. Both dual infections involve pairs of closely related but different viruses that were circulating in Sardinia in the same period. The results imply that dual ASFV infections or similar ASFV strains are more common than expected, especially in ASF endemic areas, albeit difficult to detect.


2021 ◽  
Author(s):  
Vlad Petrovan ◽  
Anusyah Rathakrishnan ◽  
Muneeb Islam ◽  
Lynnette C. Goatley ◽  
Katy Moffat ◽  
...  

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress towards vaccine development. Previously, the DP148R gene was deleted from the genome of genotype I virulent Benin 97/1 isolate. This virus, BeninΔDP148R, induced transient moderate clinical signs after immunization and high levels of protection against challenge. However, the BeninΔDP148R virus and genome persisted in blood over a prolonged period. In the current study deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R genome was shown not to reduce virus replication in macrophages in vitro. However, deletion of EP402R dramatically reduced the period of infectious virus persistence in blood in immunized pigs from 28 to 14 days and virus genome from 59 to 14 days, whilst maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus and no viremia or clinical signs were observed post-immunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and did not reduce the period of virus persistence in blood. These results show that EP402R and EP153R have a synergistic role in reducing clinical signs and levels of virus in blood. Importance: African swine fever virus (ASFV) causes a disease of domestic pigs and wild boar which results in death of almost all infected animals. The disease has a high economic impact, and no vaccine is available. We investigated the role of two ASFV proteins, called EP402R and EP153R, in determining the levels and length of time virus persists in blood from infected pigs. EP402R causes ASFV particles and infected cells to bind to red blood cells. Deletion of the EP402R gene dramatically reduced virus persistence in blood but did not reduce the level of virus. Deletion of the EP153R alone did not reduce the period or level of virus persistence in blood. However, deleting both EP153R and EP402R resulted in undetectable levels of virus in blood and no clinical signs showing the proteins act synergistically. Importantly the infected pigs were protected following infection with the wildtype virus that kills pigs.


Sign in / Sign up

Export Citation Format

Share Document