scholarly journals Analysis of the capsid processing strategy of Thosea asigna virus using baculovirus expression of virus-like particles

2001 ◽  
Vol 82 (1) ◽  
pp. 259-266 ◽  
Author(s):  
Fiona M. Pringle ◽  
James Kalmakoff ◽  
Vernon K. Ward

Thosea asigna virus (TaV), a putative member of the genus Betatetravirus of the family Tetraviridae, is predicted to have a novel capsid expression strategy compared with other characterized tetraviruses. The capsid precursor protein is cleaved twice to generate three proteins. Two of the proteins, L (58·3 kDa) and S (6·8 kDa), are incorporated into the TaV virion. The third, non-structural protein, produced from the N terminus of the precursor protein, is up to 17 kDa in size and is of unknown function. The TaV capsid precursor protein sequence without the 17 kDa N-terminal region was modelled against the solved structure from Nudaurelia ω virus (NωV) using SwissModel. The TaV model was very similar to the solved structure determined for subunit A of NωV and had features that are conserved between tetraviruses and nodaviruses, including the positioning of the cleavage site between the L and S capsid proteins. The production of virus-like particles (VLPs) using the baculovirus expression system was used to analyse the capsid processing strategy employed by TaV. VLPs were formed in both the presence and absence of the 17 kDa N-terminal region of the capsid precursor. VLPs were not formed when the L and S regions were expressed from separate promoters, indicating that cleavage between the L and S capsid proteins was an essential part of TaV capsid assembly. Expression of the TaV 17 kDa protein in bacteria did not produce intracellular tubules similar to those formed by bacterial expression of the p17 protein from Helicoverpa armigera stunt virus.

2006 ◽  
Vol 80 (20) ◽  
pp. 10201-10207 ◽  
Author(s):  
R. Thiéry ◽  
J. Cozien ◽  
J. Cabon ◽  
F. Lamour ◽  
M. Baud ◽  
...  

ABSTRACT Betanodaviruses are causative agents of viral nervous necrosis (VNN), a devastating disease of cultured marine fish worldwide. Virus particles contain a single type of coat protein that spontaneously assembles into virus-like particles (VLPs) when expressed in a baculovirus expression system. In the present study, the immunogenicity of betanodavirus VLPs and the protection they confer against VNN in the European sea bass Dicentrarchus labrax were investigated. Enzyme-linked immunosorbent assay and seroneutralization tests performed on plasma from fish vaccinated intramuscularly with doses as low as 0.1 μg of VLPs indicated that the VLPs elicited the synthesis of specific antibetanodavirus antibodies with neutralizing activity. Moreover, fish vaccinated with VLPs were protected from challenge with live virus. Both the immune response and the protective effect against viral challenge were dose dependent. Reverse transcription-PCR data indicated that higher doses of vaccine also reduced the number of fish containing detectable quantities of betanodavirus RNA on day 30 after challenge. Taken together these data strongly support the hypothesis that VLPs obtained in the baculovirus expression system may represent an effective vaccine against VNN.


Sign in / Sign up

Export Citation Format

Share Document