scholarly journals Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning

2001 ◽  
Vol 82 (5) ◽  
pp. 1049-1060 ◽  
Author(s):  
Armando Arias ◽  
Ester Lázaro ◽  
Cristina Escarmís ◽  
Esteban Domingo

The mutant spectrum of a virus quasispecies in the process of fitness gain of a debilitated foot-and-mouth disease virus (FMDV) clone has been analysed. The mutant spectrum was characterized by nucleotide sequencing of three virus genomic regions (internal ribosome entry site; region between the two AUG initiation codons; VP1-coding region) from 70 biological clones (virus from individual plaques formed on BHK-21 cell monolayers) and 70 molecular clones (RT–PCR products cloned in E. coli). The biological and molecular clones provided statistically indistinguishable definitions of the mutant spectrum with regard to the distribution of mutations among the three genomic regions analysed and with regard to the types of mutations, mutational hot-spots and mutation frequencies. Therefore, the molecular cloning procedure employed provides a simple protocol for the characterization of mutant spectra of viruses that do not grow in cell culture. The number of mutations found repeated among the clones analysed was higher than expected from the mean mutation frequencies. Some components of the mutant spectrum reflected genomes that were dominant in the prior evolutionary history of the virus (previous passages), confirming the presence of memory genomes in virus quasispecies. Other components of the mutant spectrum were genomes that became dominant at a later stage of evolution, suggesting a predictive value of mutant spectrum analysis with regard to the outcome of virus evolution. The results underline the observation that greater insight into evolutionary processes of viruses may be gained from detailed clonal analyses of the mutant swarms at the sequence level.

2002 ◽  
Vol 76 (19) ◽  
pp. 9686-9694 ◽  
Author(s):  
Peter W. Mason ◽  
Svetlana V. Bezborodova ◽  
Tina M. Henry

ABSTRACT Over the last few years, an essential RNA structure known as the cis-acting replicative element (cre) has been identified within the protein-coding region of several picornaviruses. The cre, a stem-loop structure containing a conserved AAACA motif, functions as a template for addition of U residues to the protein primer 3B. By surveying the genomes of representatives of several serotypes of foot-and-mouth disease virus (FMDV), we discovered a putative cre in the 5′ untranslated region of the genome (contiguous with the internal ribosome entry site [IRES]). To confirm the role of this putative cre in replication, we tested the importance of the AAACA motif and base pairing in the stem in FMDV genome replication. To this end, cre mutations were cloned into an FMDV replicon and into synthetic viral genomes. Analyses of the properties of these replicons and genomes revealed the following. (i) Mutations in the AAACA motif severely reduced replication, and all viruses recovered from genomes containing mutated AAACA sequences had reverted to the wild-type sequence. (ii) Mutations in the stem region showed that the ability to form this base-paired structure was important for replication. Although the cre was contiguous with the IRES, the mutations we created did not significantly reduce IRES-mediated translation in vivo. Finally, the position of the cre at the 5′ end of the genome was shown not to be critical for replication, since functional replicons and viruses lacking the 5′ cre could be obtained if a wild-type cre was added to the genome following the 3Dpol coding region. Taken together, these results support the importance of the cre in replication and demonstrate that the activity of this essential element does not require localization within the polyprotein-encoding region of the genome.


2013 ◽  
Vol 94 (7) ◽  
pp. 1486-1495 ◽  
Author(s):  
Graham J. Belsham

The foot-and-mouth disease virus (FMDV) Leader (L) protein is produced in two forms, Lab and Lb, differing only at their amino-termini, due to the use of separate initiation codons, usually 84 nt apart. It has been shown previously, and confirmed here, that precise deletion of the Lab coding sequence is lethal for the virus, whereas loss of the Lb coding sequence results in a virus that is viable in BHK cells. In addition, it is now shown that deletion of the ‘spacer’ region between these two initiation codons can be tolerated. Growth of the virus precisely lacking just the Lb coding sequence resulted in a previously undetected accumulation of frameshift mutations within the ‘spacer’ region. These mutations block the inappropriate fusion of amino acid sequences to the amino-terminus of the capsid protein precursor. Modification, by site-directed mutagenesis, of the Lab initiation codon, in the context of the virus lacking the Lb coding region, was also tolerated by the virus within BHK cells. However, precise loss of the Lb coding sequence alone blocked FMDV replication in primary bovine thyroid cells. Thus, the requirement for the Leader protein coding sequences is highly dependent on the nature and extent of the residual Leader protein sequences and on the host cell system used. FMDVs precisely lacking Lb and with the Lab initiation codon modified may represent safer seed viruses for vaccine production.


2005 ◽  
Vol 43 (2) ◽  
pp. 966-969 ◽  
Author(s):  
S. B. Nagendrakumar ◽  
G. S. Reddy ◽  
D. Chandran ◽  
D. Thiagarajan ◽  
P. N. Rangarajan ◽  
...  

2005 ◽  
Vol 79 (12) ◽  
pp. 7698-7706 ◽  
Author(s):  
Arabinda Nayak ◽  
Ian G. Goodfellow ◽  
Graham J. Belsham

ABSTRACT The 5′ terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 3B (VPg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3Dpol. To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3Dpol in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV cre has been identified previously to be within the 5′ untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 3B peptides has now been determined, and the role of the FMDV cre (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.


2019 ◽  
Vol 6 (1) ◽  
pp. 114-121
Author(s):  
Arada Izzedine Abdel‐Aziz ◽  
Aurore Romey ◽  
Anthony Relmy ◽  
Kamila Gorna ◽  
Eve Laloy ◽  
...  

2013 ◽  
Vol 189 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Lizhe Xu ◽  
William Hurtle ◽  
Jessica M. Rowland ◽  
Karissa A. Casteran ◽  
Stacey M. Bucko ◽  
...  

Gene ◽  
1983 ◽  
Vol 23 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Nieves Villanueva ◽  
Mercedes Dávila ◽  
Juan Ortín ◽  
Esteban Domingo

Sign in / Sign up

Export Citation Format

Share Document