scholarly journals Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants

2002 ◽  
Vol 83 (10) ◽  
pp. 2497-2505 ◽  
Author(s):  
Nikolai V. Kaverin ◽  
Irina A. Rudneva ◽  
Natalia A. Ilyushina ◽  
Natalia L. Varich ◽  
Aleksandr S. Lipatov ◽  
...  

To elucidate the structure of the antigenic sites of avian H5 influenza virus haemagglutinin (HA) we analysed escape mutants of a mouse-adapted variant of the H5N2 strain A/Mallard/Pennsylvania/10218/84. A panel of five anti-H5 monoclonal antibodies (mAbs) was used to select 16 escape mutants. The mutants were tested by ELISA and haemagglutination inhibition with this panel of anti-H5 mAbs and the HA genes of the mutants were sequenced. The sequencing demonstrated that the amino acid changes were grouped in two antigenic sites. One corresponded to site A in the H3 HA. The other contained areas that are separated in the amino acid sequence but are topographically close in the three-dimensional structure and partially overlap in the reactions with mAbs. This site corresponds in part to site B in the H3 structure; it also includes a region not involved in site B that partially overlaps site Sa in the H1 HA and an antigenic area in H2 HA. Mutants with the amino acid change K152N, as well as those with the change D126N, showed reduced lethality in mice. The substitution D126N, creating a new glycosylation site, was accompanied by an increase in the sensitivity of the mutants to normal mouse serum inhibitors. Several amino acid changes in the H5 escape mutants occurred at the positions of reported changes in H2 drift variants. This coincidence suggests that the antigenic sites described and analysed here may be important for drift variation if H5 influenza virus ever appears as a pathogen circulating in humans.

Nature ◽  
1984 ◽  
Vol 311 (5987) ◽  
pp. 678-680 ◽  
Author(s):  
M. Knossow ◽  
R. S. Daniels ◽  
A. R. Douglas ◽  
J. J. Skehel ◽  
D. C. Wiley

2007 ◽  
Vol 81 (23) ◽  
pp. 12911-12917 ◽  
Author(s):  
Nikolai V. Kaverin ◽  
Irina A. Rudneva ◽  
Elena A. Govorkova ◽  
Tatyana A. Timofeeva ◽  
Aleksandr A. Shilov ◽  
...  

ABSTRACT We mapped the hemagglutinin (HA) antigenic epitopes of a highly pathogenic H5N1 influenza virus on the three-dimensional HA structure by characterizing escape mutants of a recombinant virus containing A/Vietnam/1203/04 (H5N1) ΔHA and neuraminidase genes in the genetic background of A/Puerto Rico/8/34 (H1N1) virus. The mutants were selected with a panel of eight anti-HA monoclonal antibodies (MAbs), seven to A/Vietnam/1203/04 (H5N1) virus and one to A/Chicken/Pennsylvania/8125/83 (H5N2) virus, and the mutants’ HA genes were sequenced. The amino acid changes suggested three MAb groups: four MAbs reacted with the complex epitope comprising parts of the antigenic site B of H3 HA and site Sa of H1 HA, two MAbs reacted with the epitope corresponding to the antigenic site A in H3 HA, and two MAbs displayed unusual behavior: each recognized amino acid changes at two widely separate antigenic sites. Five changes were detected in amino acid residues not previously reported as changed in H5 escape mutants, and four others had substitutions not previously described. The HA antigenic structure differs substantially between A/Vietnam/1203/04 (H5N1) virus and the low-pathogenic A/Mallard/Pennsylvania/10218/84 (H5N2) virus we previously characterized (N. V. Kaverin et al., J. Gen. Virol. 83:2497-2505, 2002). The hemagglutination inhibition reactions of the MAbs with recent highly pathogenic H5N1 viruses were consistent with the antigenic-site amino acid changes but not with clades and subclades based on H5 phylogenetic analysis. These results provide information on the recognition sites of the MAbs widely used to study H5N1 viruses and demonstrate the involvement of the HA antigenic sites in the evolution of highly pathogenic H5N1 viruses, findings that can be critical for characterizing pathogenesis and vaccine design.


2004 ◽  
Vol 78 (1) ◽  
pp. 240-249 ◽  
Author(s):  
Nikolai V. Kaverin ◽  
Irina A. Rudneva ◽  
Natalia A. Ilyushina ◽  
Aleksandr S. Lipatov ◽  
Scott Krauss ◽  
...  

ABSTRACT We used a panel of monoclonal antibodies to H9 hemagglutinin to select 18 escape mutants of mouse-adapted influenza A/Swine/Hong Kong/9/98 (H9N2) virus. Cross-reactions of the mutants with the antibodies and the sequencing of hemagglutinin genes revealed two minimally overlapping epitopes. We mapped the amino acid changes to two areas of the recently reported three-dimensional structure of A/Swine/Hong Kong/9/98 hemagglutinin. The grouping of the antigenically relevant amino acid positions in H9 hemagglutinin differs from the pattern observed in H3 and H5 hemagglutinins. Several positions in site B of H3 hemagglutinin are distributed in two sites of H9 hemagglutinin. Unlike any subtype analyzed so far, H9 hemagglutinin does not contain an antigenic site corresponding to site A in H3 hemagglutinin. Positions 145 and 193 (H3 numbering), which in H3 hemagglutinin belong to sites A and B, respectively, are within one site in H9 hemagglutinin. This finding is consistent with the peculiarity of the three-dimensional structure of the H9 molecule, that is, the absence from H9 hemagglutinin of the lateral loop that forms site A in H3 and the equivalent site in H5 hemagglutinins. The escape mutants analyzed displayed phenotypic variations, including decreased virulence for mice and changes in affinity for sialyl substrates. Our results demonstrate a correlation between intersubtype differences in three-dimensional structure and variations among subtypes in the distribution of antigenic areas. Our findings also suggest that covariation and pleiotropic effects of antibody-selected mutations may be important in the evolution of H9 influenza virus, a possible causative agent of a future pandemic.


Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 267-286 ◽  
Author(s):  
J D Fackenthal ◽  
J A Hutchens ◽  
F R Turner ◽  
E C Raff

Abstract We have determined the lesions in a number of mutant alleles of beta Tub85D, the gene that encodes the testis-specific beta 2-tubulin isoform in Drosophila melanogaster. Mutations responsible for different classes of functional phenotypes are distributed throughout the beta 2-tubulin molecule. There is a telling correlation between the degree of phylogenetic conservation of the altered residues and the number of different microtubule categories disrupted by the lesions. The majority of lesions occur at positions that are evolutionarily highly conserved in all beta-tubulins; these lesions disrupt general functions common to multiple classes of microtubules. However, a single allele B2t6 contains an amino acid substitution within an internal cluster of variable amino acids that has been identified as an isotype-defining domain in vertebrate beta-tubulins. Correspondingly, B2t6 disrupts only a subset of microtubule functions, resulting in misspecification of the morphology of the doublet microtubules of the sperm tail axoneme. We previously demonstrated that beta 3, a developmentally regulated Drosophila beta-tubulin isoform, confers the same restricted morphological phenotype in a dominant way when it is coexpressed in the testis with wild-type beta 2-tubulin. We show here by complementation analysis that beta 3 and the B2t6 product disrupt a common aspect of microtubule assembly. We therefore conclude that the amino acid sequence of the beta 2-tubulin internal variable region is required for generation of correct axoneme morphology but not for general microtubule functions. As we have previously reported, the beta 2-tubulin carboxy terminal isotype-defining domain is required for suprastructural organization of the axoneme. We demonstrate here that the beta 2 variant lacking the carboxy terminus and the B2t6 variant complement each other for mild-to-moderate meiotic defects but do not complement for proper axonemal morphology. Our results are consistent with the hypothesis drawn from comparisons of vertebrate beta-tubulins that the two isotype-defining domains interact in a three-dimensional structure in wild-type beta-tubulins. We propose that the integrity of this structure in the Drosophila testis beta 2-tubulin isoform is required for proper axoneme assembly but not necessarily for general microtubule functions. On the basis of our observations we present a model for regulation of axoneme microtubule morphology as a function of tubulin assembly kinetics.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 417 ◽  
Author(s):  
Yoko Matsuzaki ◽  
Kanetsu Sugawara ◽  
Yuki Furuse ◽  
Yoshitaka Shimotai ◽  
Seiji Hongo ◽  
...  

We mapped the hemagglutinin-esterase (HE) antigenic epitopes of the influenza C virus on the three-dimensional (3D) structure of the HE glycoprotein using 246 escape mutants that were selected by a panel of nine anti-HE monoclonal antibodies (MAbs), including seven of the C/Ann Arbor/1/50 virus and two of the C/Yamagata/15/2004 virus. The frequency of variant selection in the presence of anti-HE MAbs was very low, with frequencies ranging from 10−4.62 to 10−7.58 for the C/Ann Arbor/1/50 virus and from 10−7.11 to 10−9.25 for the C/Yamagata/15/2004 virus. Sequencing of mutant HE genes revealed 25 amino acid substitutions at 16 positions in three antigenic sites: A-1, A-2, and A-3, and a newly designated Y-1 site. In the 3D structure, the A-1 site was widely located around the receptor-binding site, the A-2 site was near the receptor-destroying enzyme site, and the Y-1 site was located in the loop on the topside of HE. The hemagglutination inhibition reactions of the MAbs with influenza C viruses, circulating between 1947 and 2016, were consistent with the antigenic-site amino acid changes. We also found some amino acid variations in the antigenic site of recently circulating strains with antigenic changes, suggesting that viruses that have the potential to alter antigenicity continue to circulate in humans.


2019 ◽  
Author(s):  
Kai Shimagaki ◽  
Martin Weigt

Statistical models for families of evolutionary related proteins have recently gained interest: in particular pairwise Potts models, as those inferred by the Direct-Coupling Analysis, have been able to extract information about the three-dimensional structure of folded proteins, and about the effect of amino-acid substitutions in proteins. These models are typically requested to reproduce the one- and two-point statistics of the amino-acid usage in a protein family, i.e. to capture the so-called residue conservation and covariation statistics of proteins of common evolutionary origin. Pairwise Potts models are the maximum-entropy models achieving this. While being successful, these models depend on huge numbers of ad hoc introduced parameters, which have to be estimated from finite amount of data and whose biophysical interpretation remains unclear. Here we propose an approach to parameter reduction, which is based on selecting collective sequence motifs. It naturally leads to the formulation of statistical sequence models in terms of Hopfield-Potts models. These models can be accurately inferred using a mapping to restricted Boltzmann machines and persistent contrastive divergence. We show that, when applied to protein data, even 20-40 patterns are sufficient to obtain statistically close-to-generative models. The Hopfield patterns form interpretable sequence motifs and may be used to clusterize amino-acid sequences into functional sub-families. However, the distributed collective nature of these motifs intrinsically limits the ability of Hopfield-Potts models in predicting contact maps, showing the necessity of developing models going beyond the Hopfield-Potts models discussed here.


1987 ◽  
Vol 42 (6) ◽  
pp. 742-750 ◽  
Author(s):  
Achim Trebst

The folding through the membrane of the plastoquinone and herbicide binding protein subunits of photosystem II and the topology of the binding niche for plastoquinone and herbicides is described. The model is based on the homology in amino acid sequence and folding prediction from the hydropathy analysis of the D-1 and D-2 subunits of photosystem II to the reaction center polypeptides L and M of the bacterial reaction center. It incorporates the amino acid changes in the D-1 polypeptide in herbicide tolerant plants and those indicated by chemical tagging to be involved in Qв binding. It proposes homologous amino acids in the D-1/D-2 polypeptides to those indicated by the X-ray structure of the bacterial reaction center to be involved in Fe-, quinone- and reaction center chlorophyll-binding. The different chemical compounds known to interfere with Qв function are grouped into two families depending on their orientation in the Qв binding niche.


Sign in / Sign up

Export Citation Format

Share Document