herbicide binding
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 1)

H-INDEX

30
(FIVE YEARS 0)

Structure ◽  
2017 ◽  
Vol 25 (8) ◽  
pp. 1222-1232.e3 ◽  
Author(s):  
Anton Brausemann ◽  
Sandra Gemmecker ◽  
Julian Koschmieder ◽  
Sandro Ghisla ◽  
Peter Beyer ◽  
...  

2017 ◽  
Vol 1139 ◽  
pp. 447-454 ◽  
Author(s):  
Swarup Roy ◽  
Shailendra K. Saxena ◽  
Suryakant Mishra ◽  
Priyanka Yogi ◽  
P.R. Sagdeo ◽  
...  

2017 ◽  
Vol 114 (7) ◽  
pp. E1091-E1100 ◽  
Author(s):  
Mario D. Garcia ◽  
Amanda Nouwens ◽  
Thierry G. Lonhienne ◽  
Luke W. Guddat

Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted “S”-shaped conformation when bound to A. thaliana AHAS (AtAHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors.


Weed Science ◽  
2015 ◽  
Vol 63 (SP1) ◽  
pp. 91-115 ◽  
Author(s):  
Christophe Délye ◽  
Arnaud Duhoux ◽  
Fanny Pernin ◽  
Chance W. Riggins ◽  
Patrick J. Tranel

Resistance to herbicides occurs in weeds as the result of evolutionary adaptation (Jasieniuk et al. 1996). Basically, two types of mechanisms are involved in resistance (Beckie and Tardif 2012; Délye 2013). Target-site resistance (TSR) is caused by changes in the tridimensional structure of the herbicide target protein that decrease herbicide binding, or by increased activity (e.g., due to increased expression or increased intrinsic activity) of the target protein. Nontarget-site resistance (NTSR) is endowed by any mechanism not belonging to TSR, e.g., reduction in herbicide uptake or translocation in the plant, or enhanced herbicide detoxification (reviewed in Délye 2013; Yuan et al. 2007).


2011 ◽  
Vol 286 (18) ◽  
pp. 15964-15972 ◽  
Author(s):  
Matthias Broser ◽  
Carina Glöckner ◽  
Azat Gabdulkhakov ◽  
Albert Guskov ◽  
Joachim Buchta ◽  
...  

Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the QB site in the D1 subunit and thus block the electron transfer from QA to QB. Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the QB site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of QA, which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334–342). This discovery is discussed in the context of proton transfer to the lumen.


2006 ◽  
Vol 84 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Stephan Wilski ◽  
Udo Johanningmeier ◽  
Silvia Hertel ◽  
Walter Oettmeier

2006 ◽  
Vol 1757 (2) ◽  
pp. 106-114 ◽  
Author(s):  
K. Zimmermann ◽  
M. Heck ◽  
J. Frank ◽  
J. Kern ◽  
I. Vass ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document