scholarly journals Growth inhibition and pyruvate overflow during glucose metabolism of Eubactevium limosum are related to a limited capacity to reassimilate CO2 by the acetyl-CoA pathway

1993 ◽  
Vol 139 (8) ◽  
pp. 1861-1868 ◽  
Author(s):  
P. Le Bloas ◽  
N. Guilbert ◽  
P. Loubiere ◽  
N. D. Lindley
PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30559 ◽  
Author(s):  
Hideto Takami ◽  
Hideki Noguchi ◽  
Yoshihiro Takaki ◽  
Ikuo Uchiyama ◽  
Atsushi Toyoda ◽  
...  

2014 ◽  
Vol 395 (5) ◽  
pp. 545-558 ◽  
Author(s):  
Jae-Hun Jeoung ◽  
Sebastian Goetzl ◽  
Sandra Elisabeth Hennig ◽  
Jochen Fesseler ◽  
Christina Wörmann ◽  
...  

Abstract The reductive acetyl-coenzyme A (acetyl-CoA) pathway, also known as the Wood-Ljungdahl pathway, allows reduction and condensation of two molecules of carbon dioxide (CO2) to build the acetyl-group of acetyl-CoA. Productive utilization of CO2 relies on a set of oxygen sensitive metalloenzymes exploiting the metal organic chemistry of nickel and cobalt to synthesize acetyl-CoA from activated one-carbon compounds. In addition to the central catalysts, CO dehydrogenase and acetyl-CoA synthase, ATPases are needed in the pathway. This allows the coupling of ATP binding and hydrolysis to electron transfer against a redox potential gradient and metal incorporation to (re)activate one of the central players of the pathway. This review gives an overview about our current knowledge on how these ATPases achieve their tasks of maturation and reductive activation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Rajadurai Chinnasamy Perumal ◽  
Ashok Selvaraj ◽  
Gopal Ramesh Kumar

Carboxydothermus hydrogenoformans is a carboxydotrophic hydrogenogenic bacterium species that produces hydrogen molecule by utilizing carbon monoxide (CO) or pyruvate as a carbon source. To investigate the underlying biochemical mechanism of hydrogen production, an elementary mode analysis of acetyl-CoA pathway was performed to determine the intermediate fluxes by combining linear programming (LP) method available in CellNetAnalyzer software. We hypothesized that addition of enzymes necessary for carbon monoxide fixation and pyruvate dissimilation would enhance the theoretical yield of hydrogen. An in silico gene knockout of pyk, pykC, and mdh genes of modeled acetyl-CoA pathway allows the maximum theoretical hydrogen yield of 47.62 mmol/gCDW/h for 1 mole of carbon monoxide (CO) uptake. The obtained hydrogen yield is comparatively two times greater than the previous experimental data. Therefore, it could be concluded that this elementary flux mode analysis is a crucial way to achieve efficient hydrogen production through acetyl-CoA pathway and act as a model for strain improvement.


2018 ◽  
Vol 2 (6) ◽  
pp. 1019-1024 ◽  
Author(s):  
Sreejith J. Varma ◽  
Kamila B. Muchowska ◽  
Paul Chatelain ◽  
Joseph Moran

1968 ◽  
Vol 23 (2) ◽  
pp. 268-271 ◽  
Author(s):  
D. Werner

When the centric diatom Cyclotella cryptica is grown in a Si (OH) 4-free medium, the glutamic acid pool decreases within 3 hours to a third of the original value, whereas the aspartic acid pool is reduced by only about 20 per cent. The pools of nucleosid-triphosphates and of glycerol-1-phosphate remain unaffected during this time. The nucleosid-diphosphates pool decreases in the same way as that of aspartic acid. The decrease in the glutamic acid pool precedes the inhibition of total protein synthesis in Si (OH) 4-deficient cells, and a significant decrease in the a-ketoglutarate pool precedes the decrease of the glutamic acid content. Already within 60 minutes ofter incubation in a Si (OH) 4-free medium, the content of a-ketoglutarate is decreased to one third of the normal value. On the other hand, the acetyl CoA pathway (enhanced fatty acid synthesis) is not inhibited. The results suggest, that the Si (OH) 4-metabolism interferes with reactions between the condensing enzyme (acetyl-CoA and oxalacetate) and a-ketoglutarate. The delay between inhibition of protein- and RNA-synthesis and the different changes in the pools of amino acids and nucleosid-triphosphates resemble the regulation of the nucleosid-triphosphate pool and RNA-synthesis in amino acid starved strains of E. coli (EDLIN and NEUHARD) 1, though the primary causes are quite different.


Sign in / Sign up

Export Citation Format

Share Document