scholarly journals Salipiger nanhaiensis sp. nov., a bacterium isolated from deep sea water

2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1122-1126 ◽  
Author(s):  
Xiaofeng Dai ◽  
Xiaochong Shi ◽  
Xin Gao ◽  
Jing Liang ◽  
Xiao-Hua Zhang

A Gram-stain-negative, facultatively anaerobic, chemoheterotrophic, moderately halophilic, exopolysaccharide (EPS)-producing, cream, non-motile and rod-shaped bacterium, designated strain ZH114T, was isolated from deep water of the South China Sea, and was subjected to a polyphasic taxonomic study. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that this strain belongs to the genus Salipiger with the highest sequence similarity to Salipiger mucescens LMG 22090T (96.83 %), followed by Pseudodonghicola xiamenensis LMG 24574T (96.12 %). Growth occurred at 4–37 °C (optimum 32 °C), pH 6.0–10.0 (optimum pH 9.0–10.0) and in the presence of 0–19 % NaCl (w/v) (optimum 6 %, w/v). It did not produce poly-β-hydroxyalkanoate granules or bacteriochlorophyll a. Acid was produced from glycerol, erythrose, ribose, d-xylose, galactose, glucose, fructose, mannitol, cellobiose, maltose, lactose, melibiose, turanose, d-lyxose, d-tagatose, d-fucose, d-arabitol and l-arabitol after inoculating for 24 h and weakly positive results were also detected after 48 h in API 50CH strips with d-arabinose, l-arabinose, l-xylose, adonitol, mannose, aesculin, salicin, sucrose, mycose and l-fucose. The predominant fatty acids were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 0, C18 : 0 and 11-methyl C18 : 1ω7c. The major polar lipids of ZH114T were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified lipids. The major respiratory quinone was ubiquinone Q-10. The genomic DNA G+C content of strain ZH114T was 63.8 mol%. Based on this phenotypic, chemotaxonomic and phylogenetic analysis, strain ZH114T should be classified as a representative of a novel species of the genus Salipiger , for which the name Salipiger nanhaiensis sp. nov. is proposed. The type strain is ZH114T ( = JCM 19383T = KCTC 32468T).

2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2540-2544 ◽  
Author(s):  
Xiaofeng Dai ◽  
Xiaochong Shi ◽  
Xin Gao ◽  
Jingli Liu ◽  
Xiao-Hua Zhang

A Gram-stain-negative, strictly aerobic, non-motile, cream, long rod-shaped bacterium, designated strain ZL136T, was isolated from deep water of the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain belonged to the genus Roseivivax with highest sequence similarity to Roseivivax halodurans OCh 239T (97.0 %), followed by Roseivivax isoporae sw-2T (96.9 %). Growth occurred at 4–37 °C (optimum 32 °C), pH 6.0–10.0 (optimum 8.0) and in the presence of 0–12 % (w/v) NaCl (optimum 3–4 %) in marine broth 2216. Strain ZL136T did not produce bacteriochlorophyll a. The predominant fatty acids were C18 : 1ω7c and/or C18 : 1ω6c, C18 : 0, C16 : 0 and 11-methyl C18 : 1ω7c. The major polar lipids of ZL136T were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified lipid. The major respiratory quinone was ubiquinone Q-10. The genomic DNA G+C content of strain ZL136T was 67.0 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analysis, strain ZL136T was classified as a representative of a novel species in the genus of Roseivivax , for which the name Roseivivax marinus sp. nov. is proposed. The type strain is ZL136T ( = JCM 19386T = KCTC 32470T).


2020 ◽  
Vol 70 (6) ◽  
pp. 3679-3685 ◽  
Author(s):  
Jin-Yu Zhang ◽  
Yu Xia ◽  
Xi Feng ◽  
Da-Shuai Mu ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped (0.2–0.3×1.0-2.4 µm), catalase-positive, oxidase-negative and non-motile bacterium, designated strain RZ26T, was isolated from the marine red algae collected from the coast of Weihai, PR China. Growth of strain RZ26T occurred at 15–33 °C (optimum, 25–28 °C), pH 6.0–9.5 (optimum, pH 7.0–7.5) and 0.5–5.0 % (w/v) NaCl (optimum, 2.0–3.0 %). Resuls of phylogenetic analysis based on 16S rRNA gene sequences showed that strain RZ26T was most closely related to Maribacter spongiicola DSM 25233T (96.2 % sequence similarity), followed by Maribacter forsetii DSM 18668T (96.1 %) and Maribacter vaceletii DSM 25230T (95.4 %). The average nucleotide identity and the average amino acid identity values between strain RZ26T and M. sedimenticola KCTC 12966T, M. spongiicola DSM 25233T, M. vaceletii DSM 25230T and M. forsetii DSM 18668T were 75.6, 76.2, 76.0, 76.7, 64.3, 63.9, 68.6 and 68.0 %, respectively. The digital DNA–DNAhybridization values based on the draft genomes between strain RZ26T and M. sedimenticola KCTC 12966T, M. spongiicola DSM 25233T and M. vaceletii DSM 25230T were 38.0, 35.1 and 37.1 %, respectively. The major fatty acids in strain RZ26T were iso-C17 : 0 3-OH, iso-C15 : 0 and C16 : 1  ω7c/C16 : 1  ω6c. The major respiratory quinone was MK-6. The dominant polar lipid was phosphatidylethanolamine. The DNA G+C content was 38.0 mol%. Phylogenetic analysis shows strain RZ26T fell within a clade comprising species of the genus Maribacter . Polyphasic taxonomy indicates that the isolate represents a novel species of the genus Maribacter , for which the name Maribacter algarum sp. nov. is proposed, with type strain RZ26T (=KCTC 62992T=MCCC 1H00362T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1127-1133 ◽  
Author(s):  
Qing Chen ◽  
Li-Na Sun ◽  
Xiao-xia Zhang ◽  
Jian He ◽  
Soon-Wo Kwon ◽  
...  

A novel aerobic, non-spore-forming, non-motile, catalase- and oxidase-positive, Gram-stain-negative, coccoid to short-rod-shaped bacterial strain, designated YW11T, was isolated from soil under long-term application of triazophos. The strain was able to hydrolyse triazophos. Strain YW11T grew at 15–40 °C (optimum at 28 °C), at pH 5.0–8.0 (optimum at pH 7.5) and with 0–5.0 % (w/v) NaCl (optimum at 0.5 %). The major respiratory quinone was ubiquinone 10 (Q-10) and the major cellular fatty acids were C18 : 1ω7c, C16 : 0, C18 : 1 2-OH and C18 : 0. The genomic DNA G+C content of strain YW11T was 69.6±0.5 mol%. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, an unknown glycolipid and two unknown aminolipids. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain YW11T was a member of the genus Roseomonas , and showed the highest sequence similarity to Roseomonas cervicalis KACC 11686T (97.9 %) and Roseomonas aestuarii KACC 19645T (97.8 %) and then to Roseomonas ludipueritiae KACC 13843T (96.9 %). Strain YW11T showed low DNA–DNA relatedness with R. cervicalis KACC 11686T (32.3±2.9 %), R. aestuarii KACC 16549T (28.2±2.6 %) and R. ludipueritiae KACC 13843T (30.2±2.6 %). Based on the results of phylogenetic analysis and DNA–DNA hybridization, the whole-cell fatty acid composition as well as biochemical characteristics, strain YW11T was clearly distinguished from all recognized species of the genus Roseomonas and should be assigned to a novel species of the genus Roseomonas , for which the name Roseomonas rhizosphaerae sp. nov. is proposed. The type strain is YW11T ( = KACC 17225T = CCTCC AB2013041T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2997-3002 ◽  
Author(s):  
Neha Niharika ◽  
Swati Jindal ◽  
Jasvinder Kaur ◽  
Rup Lal

A bacterial strain, designated Dd16T, was isolated from a hexachlorocyclohexane (HCH) dumpsite at Lucknow, India. Cells of strain Dd16T were Gram-stain-negative, non-motile, rod-shaped and yellow-pigmented. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Sphingomonas in the family Sphingomonadaceae , as it showed highest sequence similarity to Sphingomonas asaccharolytica IFO 15499T (95.36 %), Sphingosinicella vermicomposti YC7378T (95.30), ‘Sphingomonas humi’ PB323 (95.20 %), Sphingomonas sanxanigenens NX02T (95.14 %) and Sphingomonas desiccabilis CP1DT (95.00 %). The major fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) C14 : 0 2-OH, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The polar lipid profile of strain Dd16T also corresponded to those reported for species of the genus Sphingomonas (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, and a sphingoglycolipid), again supporting its identification as a member of the genus Sphingomonas . The predominant respiratory quinone was ubiquinone Q10, and sym-homospermidine was the major polyamine observed. The total DNA G+C content of strain Dd16T was 65.8 mol%. The results obtained on the basis of phenotypic characteristics and phylogenetic analysis and after biochemical and physiological tests, clearly distinguished strain Dd16T from closely related members of the genus Sphingomonas . Thus, strain Dd16T represents a novel species of the genus Sphingomonas for which the name Sphingomonas indica sp. nov. is proposed. The type strain is Dd16T ( = DSM 25434T = CCM 7882T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2018-2024 ◽  
Author(s):  
Joong-Jae Kim ◽  
Eiko Kanaya ◽  
Hang-Yeon Weon ◽  
Yuichi Koga ◽  
Kazufumi Takano ◽  
...  

A strictly aerobic, Gram-negative, yellow-pigmented, non-spore-forming rod, designated 15C3T, was isolated from aerobic leaf-and-branch compost at EXPO Park in Osaka, Japan. Growth was observed at 9–33 °C (optimum 25 °C) and pH 5.6–7.9 (optimum pH 6.1–7.0). No growth occurred with >2 % (w/v) NaCl. Strain 15C3T reduced nitrate to nitrogen and showed catalase activity but not oxidase activity. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The isolate contained phosphatidylethanolamine as the major polar lipid and menaquinone-6 as the major respiratory quinone. The G+C content of the genomic DNA of strain 15C3T was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 15C3T belonged to the genus Flavobacterium and was most closely related to Flavobacterium hercynium WB 4.2-33T (96.9 % sequence similarity). On the basis of phenotypic and phylogenetic distinctiveness, strain 15C3T is considered to represent a novel species in the genus Flavobacterium , for which the name Flavobacterium compostarboris sp. nov. is proposed. The type strain is 15C3T ( = KACC 14224T  = JCM 16527T). Emended descriptions of F. hercynium , Flavobacterium resistens and Flavobacterium johnsoniae are also given.


2020 ◽  
Vol 70 (5) ◽  
pp. 3004-3011 ◽  
Author(s):  
Guangyu Li ◽  
Shanshan Wang ◽  
Yingbao Gai ◽  
Xiupian Liu ◽  
Qiliang Lai ◽  
...  

An aerobic, Gram-stain-negative bacterium, designated CLL7-20T, was isolated from a marine sediment sample from offshore of Changyi, Shandong Province, China. Cells of strain CLL7-20T were rod-shaped, motile with one or more polar flagella, and grew optimally at pH 7.0, at 28 °C and with 3 % (w/v) NaCl. The principal fatty acids of strain CLL7-20T were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The main polar lipids of strain CLL7-20T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and an unidentified aminolipid (AL). Strain CLL7-20T contained Q-9 as the major respiratory quinone. The G+C content of its genomic DNA was 56.2 mol%. Phylogenetically, strain CLL7-20T branched within the genus Marinobacter , with M. daqiaonensis YCSA40T being its closest phylogenetic relative (96.7 % 16S rRNA gene sequence similarity), followed by M. sediminum R65T (96.6 %). Average nucleotide identity and in silico DNA–DNA hybridization values between strain CLL7-20T and the closest related reference strains were 73.2% and 19.8 %, respectively. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, we suggest that strain CLL7-20T (=MCCC 1A14855T=KCTC 72664T) is the type strain of a novel species in the genus Marinobacter , for which the name Marinobacter changyiensis sp. nov. is proposed. Based on the genomic analysis, siderophore genes were found from strain CLL7-20T, which indicate its potential as a promising alternative to chemical fertilizers in iron-limitated environments such as saline soils.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2168-2173 ◽  
Author(s):  
Li-Na Sun ◽  
Jun Zhang ◽  
Qing Chen ◽  
Jian He ◽  
Qin-Fen Li ◽  
...  

A novel biosurfactant-producing strain, designated YW1T, was isolated from agricultural soil. Its taxonomic position was investigated using a polyphasic approach. The cells were short rods, Gram-negative, non-sporulating and motile. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YW1T was a member of the genus Comamonas , and showed highest sequence similarities to Comamonas aquatica LMG 2370T (98.5 %), Comamonas kerstersii LMG 3475T (97.7 %) and Comamonas terrigena LMG 1253T (97.7 %). Furthermore, DNA–DNA hybridization experiments against these three strains gave results that were clearly lower than 70 % DNA–DNA similarity, and consequently confirmed that this new strain does not belong to a previously described species of the genus Comamonas . The major respiratory quinone was ubiquinone-8. The major fatty acids (>5 %) were C16 : 0 (30.1 %), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c; 25.4 %), summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c; 15.3 %), C17 : 0 cyclo (7.4 %) and C14 : 0 (5.8 %). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unknown phospholipids and unknown lipids. Based on the phylogenetic analysis, DNA–DNA hybridization, whole-cell fatty acid composition as well as biochemical characteristics, strain YW1T was clearly distinguishable from all species of the genus Comamonas with validly published names and should be classified as a representative of a novel species of the genus Comamonas , for which the name Comamonas jiangduensis sp. nov. is proposed. The type strain is YW1T ( = CCTCC AB 2012033T = KACC 16697T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 698-703 ◽  
Author(s):  
Yochan Joung ◽  
Heeyoung Kang ◽  
Beom-Il Lee ◽  
Haneul Kim ◽  
Kiseong Joh ◽  
...  

An aerobic, Gram-stain-negative, rod-shaped bacterium, designated strain PGW1-R01T, was isolated from fresh water from the Yeongju in the Republic of Korea. The strain grew optimally at 30 °C and at pH 6-8 on R2A agar. The major cellular fatty acids were summed feature 3 [comprising C16 : 1ω7c and/or C16 : 1ω6c (50.2 %) and iso-C15 : 0 (24.8 %)]. The major respiratory quinone was MK-7. The G+C contents were 39.4 mol% and the predominant respiratory quinone was MK-7. Based on 16S rRNA gene phylogeny, the strain belongs to the genus Mucilaginibacter . The strain PGW1-R01T was closely related to ‘ Mucilaginibacter ginsenosidivorax’ (96.6 % sequence similarity), Mucilaginibacter lappiensis (96.4 %) and Mucilaginibacter flavus (96.4 %). On the basis of the evidence presented in this study, strain PGW1-R01T represents a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter http://dx.doi.org/10.1601/nm.11437 aquaedulcis sp. nov., is proposed. The type strain is PGW1-R01T( = KCTC 23942T = CECT 8102T).


Author(s):  
Lina Lyu ◽  
Qiliang Lai ◽  
Jianyang Li ◽  
Zhiqiang Yu ◽  
Zongze Shao

Strain 11-3T was isolated from the surface seawater along the coast of Xiamen Island, China. Cells were Gram-stain-negative, oxidase- and catalase-positive, short and rod-shaped, nonmotile, 0.5-1.0 μm in width and 1.0-2.0 μm in length. Growth of strain 11-3T was at temperature of 15–37°C (optimum 28–35°C), at pH of 5.0-11.0 (optimum 7.0-9.0) and at salinity range of 0-10 (optimum 0.5–1). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain 11-3T belonged to the genus Paracoccus and had the highest similarity with Paracoccus caeni MJ17T (98.1 %), followed by Paracoccus xiamenensis 12-3T (97.1 %), Paracoccus zeaxanthinifaciens ATCC 21588T (97.1 %), Paracoccus aestuarii DSM 19484T (97.0 %), Paracoccus liaowanqingii 2251T (97.0 %), Paracoccus fistulariae KCTC 22803T (97.0 %) and other species of the genus Paracoccus (95.2–96.8 %). The DNA-DNA hybridization values between strain 11-3T and the selected strains ( P. caeni MJ17T, P. xiamenensis 12-3T, P. zeaxanthinifaciens ATCC 21588T, P. aestuarii DSM 19484T and P. liaowanqingii 2251T) were 19.4, 19.5, 21.6, 19.3 and 19.8 %, respectively. Corresponding, their ANI values were 77.53, 75.61, 75.36, 75.73 and 75.33 %, respectively. The major fatty acid was summed feature 8 (C18:1 ω6c/ω7c). The major respiratory quinone was Q10. The polar lipids included phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), unidentified glycolipid (GL) and unidentified aminolipid (AL). The DNA G+C content of strain 11-3T was 60.1 %. Based on results of the phylogenetic analysis, phenotypic and chemotaxonomic characteristics, strain 11-3T represents a novel species of the genus Paracoccus , for which the name Paracoccus amoyensis sp. nov. is proposed. The type strain is 11-3T (=MCCC 1A16380T=KCTC 72689T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 370-374 ◽  
Author(s):  
Hao Zhang ◽  
Ming-gen Cheng ◽  
Bin Sun ◽  
Su-hui Guo ◽  
Man Song ◽  
...  

A Gram-stain-negative bacterium, designated XIN-1T, was isolated from a farmland river sludge sample in Suzhou, China. Cells of strain XIN-1T were strictly aerobic, non-motile and rod-shaped. Strain XIN-1T grew optimally at pH 7.0 and 28 °C. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain XIN-1T was most closely related to Flavobacterium hauense BX12T (98.2 % sequence similarity), followed by Flavobacterium beibuense F44-8T (96.3 %). The major respiratory quinone was menaquinone-6 and the major polar lipid was phosphatidylethanolamine. The major fatty acids (>5 %) were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), summed feature 4 (comprising iso-C17 : 1 I and/or anteiso-C17 : 1 B), iso-C15 : 0, C16 : 0 and iso-C17 : 0 3-OH. The genomic DNA G+C content of strain XIN-1T was 39.8 mol%. Strain XIN-1T showed low DNA–DNA relatedness with F. hauense BX12T (38.7±0.5 %). On the basis of genotypic and phenotypic data, strain XIN-1T is considered to represent a novel species of the genus Flavobacterium , for which the name Flavobacterium suzhouense sp. nov. is proposed. The type strain is XIN-1T ( = CCTCC AB 2014200T = KCTC 42107T).


Sign in / Sign up

Export Citation Format

Share Document