scholarly journals Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste

2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2248-2254 ◽  
Author(s):  
Amit Kumar Singh ◽  
Nidhi Garg ◽  
Rup Lal

A halotolerant, Gram-negative, rod-shaped and light-red-pigmented bacterium, designated LP51T, was isolated from pond sediment near a hexachlorocyclohexane dumpsite located at Chinhat, Lucknow, India. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LP51T formed a distinct phyletic clade along with the members of the genus Pontibacter. The 16S rRNA gene sequence similarity to members of the genus Pontibacter ranged from 94.2 to 99.4  %. The cells were motile, aerobic and catalase- and oxidase-positive. The major fatty acids were iso-C15  :  0 (17.8  %), iso-C15  :  0 3-OH (8.8  %), iso-C17  :  0 3-OH (5.7  %), summed feature 3 (C16  :  1ω7c and/or C16  :  1ω6c; 6.5  %) and summed feature 4 (iso-C17  :  1 I and/or anteiso-C17  :  1 B; 30.7  %). The polar lipid profile of strain LP51T showed the presence of phosphatidylethanolamine, an unidentified aminophospholipid, unknown aminolipids, unknown polar lipids and unknown glycolipids. DNA–DNA relatedness of strain LP51T with respect to the most closely related type strain, Pontibacter korlensis X14-1T, was 47.2  %. On the basis of this information, it is proposed that the isolate be assigned to a novel species of the genus Pontibacter, for which the name Pontibacter chinhatensis sp. nov. is proposed. The type strain is LP51T ( = CCM 8436T = MCC 2070T).

2007 ◽  
Vol 57 (8) ◽  
pp. 1685-1688 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Peter Schumann ◽  
Jung-A Son ◽  
Jaeseon Jang ◽  
...  

A pink-coloured bacterial strain, 5516J-15T, was isolated from an air sample from Jeju Island, Republic of Korea. The organism was found to have resistance to UV radiation typical of members of the genus Deinococcus, and it was placed within the radiation of the Deinococcus on a phylogenetic tree based on 16S rRNA gene sequences. Strain 5516J-15T shared low 16S rRNA gene sequence similarity (84.5–87.8 %) with Deinococcus species, showing highest sequence similarity to Deinococcus deserti VCD115T (87.8 %) and Deinococcus indicus Wt/1aT (87.8 %). Strain 5516J-15T had type A3β peptidoglycan with l-ornithine, menaquinone 8 (MK-8) as the major quinone and iso-C12 : 0, anteiso-C13 : 0, iso-C16 : 0 and C16 : 0 as the major fatty acids. Its polar lipid profile contained three unknown aminophospholipids, two unknown polar lipids, one unknown phospholipid and one unknown glycolipid. The DNA G+C content of strain 5516J-15T was 61.3 mol%. Based on the phylogenetic and phenotypic data presented, it is proposed that the unknown strain should be classified within a novel species in the genus Deinococcus with the name Deinococcus cellulosilyticus sp. nov. The type strain is 5516J-15T (=KACC 11606T =DSM 18568T).


2011 ◽  
Vol 61 (4) ◽  
pp. 969-973 ◽  
Author(s):  
Liping Wang ◽  
Qiliang Lai ◽  
Yuanyuan Fu ◽  
Hua Chen ◽  
Wanpeng Wang ◽  
...  

A taxonomic study was carried out on strain 10-D-4T, which was isolated from a crude oil-degrading consortium enriched from surface seawater collected around Xiamen Island, PR China. Strain 10-D-4T grew optimally at pH 7.0–8.0 and at 25 °C. The 16S rRNA gene sequence of strain 10-D-4T showed the highest similarity to those of Idiomarina salinarum ISL-52T (94.6 %), Idiomarina tainanensis PIN1T (94.2 %) and Idiomarina seosinensis CL-SP19T (94.1 %), and showed lower similarity (92.3–94.0 %) to other members of the genus Idiomarina. The major isoprenoid quinone was ubiquinone 8 (Q-8). The major fatty acids were iso-C13 : 0 (5.2 %), iso-C15 : 0 (15.3 %), C16 : 0 (14.3 %), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) (6.6 %), iso-C17 : 0 (15.4 %) and C18 : 1ω7c (13.5 %). The G+C content of the chromosomal DNA was 50.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences, together with data from phenotypic and chemotaxonomic characterization, revealed that strain 10-D-4T represents a novel species of the genus Idiomarina, for which the name Idiomarina xiamenensis sp. nov. is proposed. The type strain is 10-D-4T ( = CCTCC AB 209061T  = LMG 25227T  = MCCC 1A01370T). We also propose the transfer of Pseudidiomarina aestuarii, described recently, to the genus Idiomarina as Idiomarina aestuarii comb. nov. (type strain KYW314T  = KCTC 22740T  = JCM 16344T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4107-4112 ◽  
Author(s):  
Jihee Her ◽  
Sathiyaraj Srinivasan ◽  
Sang-Seob Lee

Two strains of Gram-stain-positive, aerobic, spore-forming and rod-shaped bacteria, designated U13T and U14, were isolated from soil of the Ukraine. Comparative analysis of the 16S rRNA gene sequences indicated that these strains belong to the genus Tumebacillus, with the highest 16S rRNA gene sequence similarity with Tumebacillus ginsengisoli Gsoil 1105T (95.48 % and 95.49 %, respectively). Strains U13T and U14 had iso-C15 : 0 and summed features 1 and 4 as the main fatty acids, and were able to grow at pH ranging from pH 5.0 to 9.0 (optimum pH 6.0–7.0), temperatures ranging from 25 to 42 °C (optimum 28–37 °C) and with 0–1 % (w/v) NaCl (optimum 0 %, w/v) on R2A agar medium. Chemotaxonomic data revealed that the cell-wall peptidoglycan type of the two strains was type A1γ (meso-diaminopimelic acid). On the basis of the evidence from this study, strains U13T and U14 represent a novel species of the genus Tumebacillus, for which the name Tumebacillus luteolus sp. nov. is proposed. The type strain is U13T ( = KEMB 7305-100T = JCM 19866T) and a second strain is U14 ( = KEMB 7305-101 = JCM 19867).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3030-3036 ◽  
Author(s):  
Guiqin Yang ◽  
Ming Chen ◽  
Zhen Yu ◽  
Qin Lu ◽  
Shungui Zhou

Two novel thermophilic bacteria, designated SgZ-9T and SgZ-10T, were isolated from compost. Cells of the two strains were catalase-positive, endospore-forming and Gram-staining-positive rods. Strain SgZ-9T was oxidase-positive and non-motile, and strain SgZ-10T was oxidase-negative and motile. The highest 16S rRNA gene sequence similarity for both strains SgZ-9T and SgZ-10T was observed with Bacillus fortis (97.5 % and 96.9 %, respectively). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SgZ-9T formed a cluster with B. fortis R-6514T and Bacillus fordii R-7190T, and SgZ-10T formed a cluster with Bacillus farraginis R-6540T. The DNA–DNA pairing studies showed that SgZ-9T displayed 41.6 % and 30.7 % relatedness to the type strains of B. fortis and B. fordii , respectively. The 16S rRNA gene sequence similarity between strains SgZ-9T and SgZ-10T was 97.2 %, and the level of DNA–DNA relatedness between them was 39.2 %. The DNA G+C content of SgZ-9T and SgZ-10T was 45.3 and 47.9 mol%, respectively. Chemotaxonomic analysis revealed that both strains contained the menaquinone 7 (MK-7) as the predominant respiratory quinone. The major cellular fatty acids (>5 %) were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C17 : 0 in SgZ-9T and iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0, anteiso-C17 : 0 and iso-C16 : 0 in SgZ-10T. Based on the phenotypic characteristics, chemotaxonomic features, DNA–DNA hybridization with the nearest phylogenetic neighbours and phylogenetic analysis based on the 16S rRNA gene sequences, the two strains were determined to be two distinct novel species in the genus Bacillus , and the names proposed are Bacillus composti sp. nov. SgZ-9T ( = CCTCC AB2012109T = KACC 16872T) and Bacillus thermophilus sp. nov. SgZ-10T (CCTCC AB2012110T = KACC 16873T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1509-1514 ◽  
Author(s):  
Shariff Osman ◽  
Masataka Satomi ◽  
Kasthuri Venkateswaran

Two novel spore-forming, Gram-positive, mesophilic, heterotrophic bacteria representing two novel species were isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) at Pasadena, CA, USA. The incidence of similar strains was examined by screening the growing collection of isolates (~400 strains) obtained from the JPL-SAF using species-specific PCR primer sets designed from the 16S rRNA gene sequences of strains SAFN-016T and SAFN-007T. Phylogenetic analysis of 16S rRNA gene sequences placed these novel isolates within the genus Paenibacillus. Two strains, SAFN-016T and SAFN-125, shared 98 % 16S rRNA gene sequence similarity with Paenibacillus timonensis and 97 % similarity with Paenibacillus macerans. Strain SAFN-007T showed 95.2 % 16S rRNA gene sequence similarity with Paenibacillus kobensis, its nearest phylogenetic neighbour. The results of DNA–DNA hybridization, physiological tests and biochemical analysis allowed genotypic and phenotypic differentiation of the isolates from currently recognized Paenibacillus species. Strain SAFN-007T and strains SAFN-016T and SAFN-125 are representatives of two separate novel species, for which the names Paenibacillus pasadenensis sp. nov. (type strain SAFN-007T=ATCC BAA-1211T=NBRC 101214T) and Paenibacillus barengoltzii sp. nov. (type strain SAFN-016T=ATCC BAA-1209T=NBRC 101215T) are proposed.


2011 ◽  
Vol 61 (2) ◽  
pp. 384-391 ◽  
Author(s):  
Wolfgang Eder ◽  
Gerhard Wanner ◽  
Wolfgang Ludwig ◽  
Hans-Jürgen Busse ◽  
Frank Ziemke-Kägeler ◽  
...  

A Gram-negative, oxidase- and catalase-positive, flagellated, rod-shaped bacterium, designated strain EM 1T, was isolated from purified water. 16S rRNA gene sequence analysis indicated that the novel strain belonged to the family Oxalobacteraceae within the class Betaproteobacteria; the closest phylogenetic relative was Undibacterium pigrum DSM 19792T (96.7 % gene sequence similarity). The new isolate could be distinguished from the type strain of U. pigrum DSM 19792T (=CCUG 49009T=CIP 109318T) and from strain CCUG 49012T, which has been described as a second genomovar of this species, on the basis of genotypic data and several phenotypic properties. An S-layer was present in the cell envelope in U. pigrum DSM 19792T, but was absent in strains EM 1T and CCUG 49012T. Test conditions were established that enabled strain CCUG 49012T to be distinguished from U. pigrum DSM 19792T. As found for U. pigrum, the main fatty acids of strains EM 1T and CCUG 49012T were summed feature 3 (including unsaturated C16 : 1 ω7c), straight-chain C16 : 0 and unsaturated C18 : 1 ω7c (low percentage in strain CCUG 49012T), and C10 : 0 3-OH was the sole hydroxylated fatty acid. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The polyamine profile was mainly composed of the major compound putrescine and moderate amounts of 2-hydroxyputrescine. In contrast to U. pigrum and strain CCUG 49012T, where ubiquinone Q8 was reported as the sole quinone component, the quinone system of strain EM 1T consisted of ubiquinone Q-8 (64 %) and Q-7 (36 %). The 16S rRNA gene sequence similarity, the polar lipid profile and the absence of C12-hydroxylated fatty acids all indicated that strain EM 1T was affiliated with the genus Undibacterium. 16S rRNA gene sequence similarity values lower than 97.0 % and several differentiating phenotypic traits demonstrated that strain EM 1T represents a novel species for which the name Undibacterium oligocarboniphilum sp. nov. is proposed (type strain EM 1T=DSM 21777T=CCUG 57265T). In addition, based on previously published results and this study, a separate species, Undibacterium parvum sp. nov., is proposed with strain CCUG 49012T (=DSM 23061T=CIP 109317T) as the type strain.


2011 ◽  
Vol 61 (10) ◽  
pp. 2373-2378 ◽  
Author(s):  
Muhammad Yasir ◽  
Eu Jin Chung ◽  
Geun Cheol Song ◽  
Fehmida Bibi ◽  
Che Ok Jeon ◽  
...  

A Gram-negative, rod-shaped bacterial strain, YC6729T, was isolated from vermicompost collected at Masan, Korea, and its taxonomic position was investigated by a polyphasic taxonomic approach. Strain YC6729T grew optimally at 30 °C and at pH 6.5–8.5. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC6729T belongs to the genus Chitinophaga in the family Chitinophagaceae. It was related most closely to Chitinophaga terrae KP01T (96.4 % 16S rRNA gene sequence similarity), Chitinophaga ginsengisegetis Gsoil 040T (96.1 %), Chitinophaga arvensicola IAM 12650T (96.1 %) and Chitinophaga pinensis DSM 2588T (93.3 %). Strain YC6729T contained MK-7 as the major menaquinone and homospermidine as the major polyamine. The fatty acids of strain YC6729T were iso-C15 : 0, C16 : 1ω5c, iso-C17 : 0 3-OH, C16 : 0, anteiso-C18 : 0 and/or C18 : 2ω6,9c, iso-C15 : 0 2-OH and/or C16 : 1ω7c, C14 : 0, iso-C15 : 0 3-OH, iso-C15 : 1 G, C18 : 1ω5c, iso-C15 : 1 I and/or C13 : 0 3-OH, C13 : 0 2-OH, C16 : 0 3-OH and unknown fatty acid ECL 13.565. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids and unknown lipids. The total DNA G+C content of strain YC6729T was 48.9 mol%. The phenotypic, chemotaxonomic and phylogenetic data showed that strain YC6729T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga eiseniae sp. nov. is proposed. The type strain is YC6729T ( = KACC 13774T  = DSM 22224T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2065-2068 ◽  
Author(s):  
Haneul Kim ◽  
Yochan Joung ◽  
Tae-Seok Ahn ◽  
Kiseong Joh

A non-motile and yellow-pigmented bacterium, designated strain HMD3054T, was isolated from a solar saltern in Jeungdo, Republic of Korea. The major fatty acids of strain HMD3054T were iso-C15 : 0 (31.4 %), anteiso-C15 : 0 (23.5 %), iso-C17 : 0 3-OH (14.2 %), summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c; 6.9 %) and summed feature 9 (comprising iso-C17 : 1ω9c and/or 10-methyl C16 : 0; 6.0 %). The major respiratory quinones were MK-6 and MK-7. The DNA G+C content of strain HMD3054T was 46.9 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD3054T formed a lineage within the genus Echinicola. Strain HMD3054T was closely related to Echinicola vietnamensis KMM 6221T (94.3 % 16S rRNA gene sequence similarity) and Echinicola pacifica KMM 6172T (94.0 %). On the basis of the evidence presented in this study, strain HMD3054T represents a novel species of the genus Echinicola, for which the name Echinicola jeungdonensis sp. nov. is proposed. The type strain is HMD3054T ( = KCTC 23122T  = CECT 7682T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2689-2695 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Sung-Min Won ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated, non-gliding and ovoid or rod-shaped bacterial strain, designated TYO-8T, was isolated from an oyster collected from the South Sea in South Korea. Strain TYO-8T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree, based on 16S rRNA gene sequences, revealed that strain TYO-8T fell within the clade comprising the type strains of species of the genus Lutibacter, clustering coherently with the type strain of Lutibacter litoralis with a sequence similarity of 99.3 %. Strain TYO-8T exhibited 16S rRNA gene sequence similarity values of 95.3–97.5 % to the type strains of other species of the genus Lutibacter and of less than 92.9 % to the type strains of other species with validly published names. Strain TYO-8T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 0 3-OH and iso-C15 : 1 G as the major fatty acids. The major polar lipids of strain TYO-8T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain TYO-8T was 33.8 mol% and its DNA–DNA relatedness values with the type strains of L. litoralis, Lutibacter aestuarii and Lutibacter flavus were 13–27 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain TYO-8T is distinct from other species of the genus Lutibacter. On the basis of the data presented, strain TYO-8T is considered to represent a novel species of the genus Lutibacter, for which the name Lutibacter crassostreae sp. nov. is proposed. The type strain is TYO-8T ( = KCTC 42461T = NBRC 110923T).


2005 ◽  
Vol 55 (2) ◽  
pp. 941-947 ◽  
Author(s):  
Grigorii I. Karavaiko ◽  
Tat'yana I. Bogdanova ◽  
Tat'yana P. Tourova ◽  
Tamara F. Kondrat'eva ◽  
Iraida A. Tsaplina ◽  
...  

Comparative analysis of 16S rRNA gene sequences, DNA–DNA hybridization data and phenotypic properties revealed that ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 is not a member of the genus Sulfobacillus. Phylogenetically, strain K1 is closely related to unclassified strains of the genus Alicyclobacillus: the 16S rRNA gene sequence of strain K1 is similar to that of Alicyclobacillus sp. AGC-2 (99·6 %), Alicyclobacillus sp. 5C (98·9 %) and Alicyclobacillus sp. CLG (98·6 %) and bacterium GSM (99·1 %). The 16S rRNA gene sequence similarity values for strain K1 and species of the genus Alicyclobacillus with validly published names were in the range 92·1–94·6 %, and for S. thermosulfidooxidans VKM B-1269T the value was 87·7 %. Sulfobacillus disulfidooxidans SD-11T was also phylogenetically related to strain K1 (92·6 % sequence similarity) and thus belonged to the genus Alicyclobacillus. Chemotaxonomic data, such as the major cell-membrane lipid components of strains K1 and SD-11T (ω-alicyclic fatty acids) and the major isoprenoid quinone (menaquinone MK-7) of strain K1, supported the affiliation of strains K1 and SD-11T to the genus Alicyclobacillus. Physiological and molecular biological tests allowed genotypic and phenotypic differentiation of strains K1 and SD-11T from the nine Alicyclobacillus species with validly published names. The G+C content of the DNA of strain K1 was 48·7±0·6 mol%; that of strain SD-11T was 53±1 mol%. DNA–DNA reassociation studies showed low relatedness (22 %) between strains K1 and SD-11T, and even lower relatedness (3–5 %) between these strains and Alicyclobacillus acidocaldarius subsp. acidocaldarius ATCC 27009T, DSM 446T. DNA reassociation of strains K1 and SD-11T with Alicyclobacillus cycloheptanicus DSM 4006T gave values of 15 and 21, respectively. Based on the phenotypic and phylogenetic characteristics of strains K1 and SD-11T, Alicyclobacillus tolerans sp. nov. (type strain, K1T=VKM B-2304T=DSM 16297T) and Alicyclobacillus disulfidooxidans comb. nov. (type strain, SD-11T=ATCC 51911T=DSM 12064T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document