scholarly journals Paenibacillus oenotherae sp. nov. and Paenibacillus hemerocallicola sp. nov., isolated from the roots of herbaceous plants

2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2717-2725 ◽  
Author(s):  
Tae-Su Kim ◽  
Ji-Hye Han ◽  
Yochan Joung ◽  
Seung Bum Kim

Two Gram-staining-positive, aerobic, endospore-forming, motile bacteria, strains DT7-4T and DLE-12T, were isolated from roots of evening primrose (Oenothera biennis) and day lily (Hemerocallis fulva), respectively, and subjected to taxonomic characterization. Analysis of 16S rRNA gene sequences indicated that the two strains fell into two distinct phylogenetic clusters belonging to the genus Paenibacillus. Strain DT7-4T was most closely related to Paenibacillus phyllosphaerae PALXIL04T and Paenibacillus taihuensis THMBG22T, with 96.3 % 16S rRNA gene sequence similarity to each, and strain DLE-12T was most closely related to Paenibacillus ginsengarvi Gsoil 139T and Paenibacillus hodogayensis SGT, with 96.6 and 93.3  % sequence similarity, respectively. Both isolates contained anteiso-C15 : 0 as the dominant fatty acid, meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan and MK-7 as the respiratory menaquinone. The cellular polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unidentified polar lipids. The DNA G+C contents of strains DT7-4T and DLE-12T were 50.1 ± 0.7 and 55.2 ± 0.5 mol%, respectively. The chemotaxonomic properties of both isolates were typical of members of the genus Paenibacillus. However, our biochemical and phylogenetic analyses distinguished each isolate from related species. Based on our polyphasic taxonomic analysis, strains DT7-4T and DLE-12T should be recognized as representatives of novel species of Paenibacillus, for which the names Paenibacillus oenotherae sp. nov. (type strain DT7-4T = KCTC 33186T = JCM 19573T) and Paenibacillus hemerocallicola sp. nov. (type strain DLE-12T = KCTC 33185T = JCM 19572T) are proposed.

2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2005 ◽  
Vol 55 (2) ◽  
pp. 913-917 ◽  
Author(s):  
F. L. Thompson ◽  
C. C. Thompson ◽  
S. Naser ◽  
B. Hoste ◽  
K. Vandemeulebroecke ◽  
...  

Six new Vibrio-like isolates originating from different species of bleached and healthy corals around Magnetic Island (Australia) were investigated using a polyphasic approach. Phylogenetic analyses based on 16S rRNA, recA and rpoA gene sequences split the isolates in two new groups. Strains LMG 22223T, LMG 22224, LMG 22225, LMG 22226 and LMG 22227 were phylogenetic neighbours of Photobacterium leiognathi LMG 4228T (95·6 % 16S rRNA gene sequence similarity), whereas strain LMG 22228T was related to Enterovibrio norvegicus LMG 19839T (95·5 % 16S rRNA gene sequence similarity). The two new groups can be distinguished from closely related species on the basis of several phenotypic features, including fermentation of d-mannitol, melibiose and sucrose, and utilization of different compounds as carbon sources, arginine dihydrolase activity, nitrate reduction, resistance to the vibriostatic agent O/129 and the presence of fatty acids 15 : 0 iso and 17 : 0 iso. The names Photobacterium rosenbergii sp. nov. (type strain LMG 22223T=CBMAI 622T=CC1T) and Enterovibrio coralii sp. nov. (type strain LMG 22228T=CBMAI 623T=CC17T) are proposed to accommodate these new isolates. The G+C contents of the DNA of the two type strains are respectively 47·6 and 48·2 mol%.


2007 ◽  
Vol 57 (2) ◽  
pp. 337-341 ◽  
Author(s):  
Soon Dong Lee ◽  
Se Jae Kim

A Gram-positive, non-motile, rod-shaped actinomycete strain, designated SSW1-57T, was isolated from a dried seaweed sample from the coast of Jeju Island, Republic of Korea and subjected to a polyphasic taxonomic study. A neighbour-joining tree based on 16S rRNA gene sequences showed that the organism was related to members of the family Nocardioidaceae and formed a separate branch at the base of a taxon encompassing members of the genus Aeromicrobium, whereas it occupied an intermediate position between Aeromicrobium alkaliterrae–Aeromicrobium marinum and Aeromicrobium erythreum–Aeromicrobium fastidiosum clusters in maximum-parsimony and maximum-likelihood trees. The phylogenetic association of the isolate with the genus Aeromicrobium was supported by the following chemotaxonomic properties: ll-diaminopimelic acid in the peptidoglycan, MK-9(H4) as the major menaquinone and major fatty acids cis-9-octadecenoic acid, hexadecanoic acid, 10-methyl octadecanoic acid and 2-hydroxy hexadecanoic acid. The polar lipid profile contained phosphatidylinositol, diphosphatidylglycerol and phosphatidylglycerol. Levels of 16S rRNA gene sequence similarity between the novel organism and the type strains of the four recognized Aeromicrobium species were in the range 96.5–96.7 %. On the basis of phylogenetic analyses and phenotypic data, it is proposed that the organism should be classified as representing a novel species of the genus Aeromicrobium, with the name Aeromicrobium tamlense sp. nov. The type strain is SSW1-57T (=JCM 13811T=NRRL B-24466T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1334-1338 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, non-motile and rod- or coccoid-shaped bacterial strain, MDN22T, was isolated from a soil sample from Korea. Strain MDN22T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 0–0.5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain MDN22T was phylogenetically most closely related to the genera Nocardioides and Marmoricola. In the neighbour-joining phylogenetic tree, strain MDN22T was most closely related to Nocardioides jensenii KCTC 9134T, with which it exhibited 98.3 % 16S rRNA gene sequence similarity. The strain exhibited 93.1–96.9 % and 95.3–95.9 % 16S rRNA gene sequence similarities to the type strains of other species of the genera Nocardioides and Marmoricola, respectively. The chemotaxonomic properties of strain MDN22T were consistent with those of the genus Nocardioides; the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, the predominant menaquinone was MK-8(H4) and the major fatty acids were iso-C16 : 0 and C17 : 1. The DNA G+C content was 68.7 mol%. DNA–DNA relatedness data and differential phenotypic properties suggested that strain MDN22T could be differentiated from N. jensenii and Nocardioides dubius. On the basis of the data obtained, strain MDN22T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides daedukensis sp. nov., is proposed. The type strain is MDN22T (=KCTC 19601T=CCUG 57505T).


2011 ◽  
Vol 61 (4) ◽  
pp. 834-838 ◽  
Author(s):  
Misa Otoguro ◽  
Hideki Yamamura ◽  
Tomohiko Tamura ◽  
Rohmatussolihat Irzaldi ◽  
Shanti Ratnakomala ◽  
...  

Two actinomycete strains, ID05-A0653T and ID06-A0464T, were isolated from soils of West Timor and Lombok island, respectively, in Indonesia. 16S rRNA gene sequence analysis clearly demonstrated that the isolates belonged to the family Pseudonocardiaceae and were closely related to the genus Actinophytocola. Strains ID05-A0653T and ID06-A0464T exhibited 98.1 and 98.2 % 16S rRNA gene sequence similarity, respectively, with Actinophytocola oryzae GMKU 367T. The isolates grew well on ISP media and produced white aerial mycelium. Short spore chains were formed directly on the substrate mycelium. The isolates contained meso-diaminopimelic acid, arabinose and galactose as cell-wall components, MK-9(H4) as the sole isoprenoid quinone, iso-C16 : 0 as the major cellular fatty acid and phosphatidylethanolamine as the diagnostic polar lipid. The DNA G+C contents of strains ID05-A0653T and ID06-A0464T were 69.7 and 71.2 mol%, respectively. On the basis of phenotypic characteristics, DNA–DNA relatedness and 16S rRNA gene sequence comparisons, strains ID05-A0653T and ID06-A0464T each represent a novel species of the genus Actinophytocola, for which the names Actinophytocola timorensis sp. nov. (type strain ID05-A0653T  = BTCC B-673T  = NBRC 105524T) and Actinophytocola corallina sp. nov. (type strain ID06-A0464T  = BTCC B-674T  = NBRC 105525T) are proposed.


Author(s):  
Juan Zhou ◽  
Yuyuan Huang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four aerobic, Gram-stain-positive, rod-shaped bacteria (HY60T, HY54, HY82T and HY89) were isolated from bat faeces of Hipposideros and Rousettus species collected in PR China. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the four novel strains formed two separate but adjacent subclades close to Microbacterium agarici CGMCC 1.12260T (97.6–97.7 % similarity), Microbacterium humi JCM 18706T (97.3–97.5 %) and Microbacterium lindanitolerans JCM 30493T (97.3–97.4 %). The 16S rRNA gene sequence similarity was 98.3 % between strains HY60T and HY82T, and identical within strain pairs HY60T/HY54 and HY82T/HY89. The DNA G+C contents of strains HY60T and HY82T were 61.9 and 63.3 mol%, respectively. The digital DNA–DNA hybridization and average nucleotide identity values between each novel strain and their closest relatives were all below the 70 % and 95–96 % thresholds for species delimitation, respectively. All four novel strains contained anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0 as the main fatty acids, MK-11 and MK-12 as the major respiratory quinones, and diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid as the predominant polar lipids. The cell-wall peptidoglycan was of B type and contained alanine, glutamate, glycine and ornithine. The acyl type of the muramic acid was glycolyl. The whole-cell sugars were rhamnose and ribose. Based on the foregoing polyphasic analyses, it was concluded that the four uncharacterized strains represented two novel species of the genus Microbacterium , for which the names Microbacterium chengjingii sp. nov. [type strain HY60T (=CGMCC 1.17468T=GDMCC 1.1951T=KACC 22102T)] and Microbacterium fandaimingii sp. nov. [type strain HY82T (=CGMCC 1.17469T=GDMCC 1.1949T=KACC 22101T)] are proposed, respectively.


2005 ◽  
Vol 55 (3) ◽  
pp. 1027-1031 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Hye-Ryoung Kim ◽  
Byoung-Jun Yoon ◽  
...  

A moderately halophilic, Gram-positive, rod-shaped bacterium (BH030004T) was isolated from a solar saltern in Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BH030004T belonged to the genus Pontibacillus. Chemotaxonomic data (DNA G+C content, 42 mol%; major isoprenoid quinone, MK-7; cell-wall type, A1γ-type meso-diaminopimelic acid; major fatty acids, iso-C15 : 0 and anteiso-C15 : 0) also supported the affiliation of the isolate to the genus Pontibacillus. Although the 16S rRNA gene sequence similarity between strain BH030004T and Pontibacillus chungwhensis DSM 16287T was relatively high (99·1 %), physiological properties and DNA–DNA hybridization (about 7 % DNA–DNA relatedness) allowed genotypic and phenotypic differentiation of strain BH030004T from the type strain of P. chungwhensis. Therefore, strain BH030004T represents a novel species of the genus Pontibacillus, for which the name Pontibacillus marinus sp. nov. is proposed. The type strain is BH030004T (=KCTC 3917T=DSM 16465T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2406-2411 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-positive, non-motile, coccoid-shaped, non-spore-forming halophilic bacterial strain, BY-5T, was isolated from a marine solar saltern in Korea and its taxonomic position was investigated by using a polyphasic approach. The novel strain grew optimally at 37 °C and in the presence of 10 % (w/v) NaCl. Strain BY-5T had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-7 as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 47.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BY-5T formed a coherent cluster with Bacillus halophilus and Marinococcus albus. Strain BY-5T exhibited 16S rRNA gene sequence similarity values of 98.7 and 97.4 % to the type strains of B. halophilus and M. albus, respectively. Strain BY-5T was distinguished from B. halophilus and M. albus by several phenotypic properties and DNA–DNA relatedness data. On the basis of the combined chemotaxonomic and phylogenetic data, it is proposed that M. albus, B. halophilus and strain BY-5T should be placed in a new genus as three separate species. Marinococcus albus and Bacillus halophilus are reclassified in a new genus, Salimicrobium gen. nov., as Salimicrobium album comb. nov. and Salimicrobium halophilum comb. nov., respectively. The type species of the new genus is Salimicrobium album. Strain BY-5T (=KCTC 3989T=CIP 108918T) is placed in the genus Salimicrobium as a novel species Salimicrobium luteum sp. nov.


2006 ◽  
Vol 56 (10) ◽  
pp. 2369-2373 ◽  
Author(s):  
Soon Dong Lee

A marine actinomycete strain, designated KSW2-15T, was isolated from a dried seaweed sample collected from a sandy beach on the coast of Jeju in the Republic of Korea. The organism produced non-motile, non-endospore-forming, Gram-positive, coccoid cells. The colonies were circular, translucent and yellow in colour with entire margins. meso-Diaminopimelic acid was present as the diamino acid of the peptidoglycan. The acyl type of the muramic acid was acetyl. Mycolic acids were not present. The predominant menaquinone was MK-8(H4). The polar lipids were phosphatidylethanolamine, phosphatidylinositol and diphosphatidylglycerol. The major cellular fatty acids were of the saturated, unsaturated and iso-branched methyl types. The DNA G+C content was 74 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain KSW2-15T formed a loose association with ‘Candidatus Nostocoida limicola’, within the radiation of the family Intrasporangiaceae of the suborder Micrococcineae. The organism showed the highest levels of sequence similarity with ‘Candidatus Nostocoida limicola’ (96.1 %), Terrabacter tumescens (96.1 %) and Terrabacter terrae (96.0 %). The levels of 16S rRNA gene sequence similarity between the isolate and members of other genera of the family Intrasporangiaceae were in the range 92.1–95.5 %. On the basis of the polyphasic evidence, the isolate should be classified within a novel genus and species, for which the name Phycicoccus jejuensis gen. nov., sp. nov. is proposed. The type strain of Phycicoccus jejuensis is strain KSW2-15T (=KCCM 42315T=NRRL B-24460T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2163-2167 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Tae-Kwang Oh ◽  
Yong-Ha Park

A Gram-variable, endospore-forming moderately halophilic rod, strain SF-121, was isolated from a marine solar saltern of the Yellow Sea in Korea. The result of 16S rRNA gene sequence analysis showed that strain SF-121 has highest sequence similarity (99·7 %) with the type strain of Bacillus halodenitrificans. Phylogenetic analyses based on 16S rRNA gene sequences revealed that B. halodenitrificans DSM 10037T and strain SF-121 are more closely related to the genus Virgibacillus than to the genus Bacillus. Strain SF-121 and B. halodenitrificans DSM 10037T exhibited 16S rRNA gene similarity levels of 95·3–97·5 % with the type strains of Virgibacillus species and 94·0 % with the type strain of Bacillus subtilis. DNA–DNA relatedness and phenotypic data indicated that B. halodenitrificans DSM 10037T and strain SF-121 are members of the same species. B. halodenitrificans DSM 10037T and strain SF-121 exhibited DNA–DNA relatedness values of 9–11 % with the type strains of Virgibacillus carmonensis and Virgibacillus marismortui. On the basis of the phenotypic, chemotaxonomic, phylogenetic and genetic data, B. halodenitrificans should be reclassified in the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.


Sign in / Sign up

Export Citation Format

Share Document