scholarly journals Reconsideration of the ‘well-known’ hypotrichous ciliate Pleurotricha curdsi (Shi et al., 2002) Gupta et al., 2003 (Ciliophora, Sporadotrichida), with notes on its morphology, morphogenesis and molecular phylogeny

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3216-3225 ◽  
Author(s):  
Xiaoteng Lu ◽  
Chen Shao ◽  
Yuhe Yu ◽  
Alan Warren ◽  
Jie Huang

The oxytrichid species Pleurotricha curdsi (Shi et al., 2002) Gupta et al., 2003, isolated from a tributary of the Yangtze River in the Mudong district of Chongqing, southern China, was reinvestigated with emphasis on its morphology, morphogenesis and small-subunit (SSU) rDNA-based phylogeny. Compared with three previously described populations, the Mudong population of P. curdsi is characterized by its large body size, 170–295 × 65–110 μm in vivo, and by having a variable number of right marginal rows, either two or three. Likewise, the number of right marginal rows anlagen (RMA) is also variable, i.e. usually two, but sometimes several small extra anlagen that give rise to the formation of the third row, are present to the left of the RMAs. We posit that the Mudong population is an intermediate form between the three previously described populations. Phylogenetic analyses based on the SSU rDNA sequence data show that all populations of P. curdsi cluster with the type species of the genus, Pleurotricha lanceolata, in a clade nested within the Oxytrichidae.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Gao ◽  
Chen Shao ◽  
Qiuyue Tang ◽  
Jingbao Li

The morphology and morphogenesis of Pseudosincirra longicirrata nov. gen. and nov. comb., isolated from southern China, were investigated with living observation and protargol staining. Our population is similar to the original population in living characteristics and ciliary patterns. The main determinable morphogenetic features of P. longicirrata nov. comb. are the presence of five frontoventral-transverse cirral anlagen (FVT-anlagen) and a dorsomarginal kinety anlage. According to the origin of FVT-anlagen IV and V in proter, it can be determined that P. longicirrata nov. comb. possesses two frontoventral rows and one right marginal row. Hence, a new genus, Pseudosincirra nov. gen., is proposed, and the diagnosis of P. longicirrata nov. comb. is improved. The new genus is diagnosed as follows: adoral zone of membranelles and undulating membranes is in a Gonostomum pattern; there are three enlarged frontal cirri, one buccal cirrus, and one parabuccal cirrus; postperistomial cirrus and transverse cirri are lacking; there are two more or less long frontoventral rows and one right and two or more left marginal rows; cirri within all rows very widely spaced; dorsal kinety pattern is of Urosomoida type, that is, three dorsal kineties and one dorsomarginal kinety; and caudal cirri are present. Phylogenetic analyses based on the small subunit ribosomal (SSU rDNA) sequence data indicate that P. longicirrata nov. comb. clusters with Deviata and Perisincirra. It is considered that Pseudosincirra nov. gen. and Perisincirra paucicirrata should be assigned to the family Deviatidae; fine cirri, and cirri within all rows being relatively widely spaced, should be considered as plesiomorphies of Deviatidae; and Deviatidae is closely related to Dorsomarginalia or Strongylidium–Hemiamphisiella–Pseudouroleptus.


2020 ◽  
Author(s):  
Yong Chi ◽  
Yuqing Li ◽  
Qianqian Zhang ◽  
Mingzhen Ma ◽  
Alan Warren ◽  
...  

Abstract Background Heterotrichous ciliates are common members of microeukaryote communities which play important roles in the transfer of material and energy flow in aquatic food webs. This group has been known over two centuries due to their large body size and cosmopolitan distribution. Nevertheless, species identification and phylogenetic relationships of heterotrichs remain challenging due to the lack of accurate morphological information and insufficient molecular data. Results The morphology and phylogeny of two poorly known heterotrichous ciliates, Gruberia uninucleata Kahl, 1932 and Linostomella vorticella (Ehrenberg, 1833) Aescht in Foissner et al. , 1999, were investigated based on their living morphology, infraciliature, and small subunit (SSU) rDNA sequence data. Based on a combination of previous and present studies, detailed morphometric data and the improved diagnoses of both species are supplied here. In addition, molecular data of the two species are reported for the first time. Phylogenetic analyses based on SSU rDNA sequence data support the generic assignment of these two species. Conclusions Two insufficiently studied species, G. uninucleata and L. vorticella , are redefined using state-of-the-art methods. Previous reports on these two species are re-evaluated in the light of present findings.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Shao ◽  
Qi Gao ◽  
Alan Warren ◽  
Jingyi Wang

The morphology and the regulation of cortical pattern associated with the cell size, division, and phylogenetic position of a new hypotrichous ciliate, Quadristicha subtropica n. sp. collected from a freshwater pond in southern China, were investigated. Quadristicha subtropica n. sp. is characterized as follows: size in vivo 60–115 μm × 25–45 μm; 19–21 adoral membranelles; buccal cirrus near anterior end of endoral and paroral; cirrus IV/3 at about level of buccal vertex; right marginal row begins ahead of buccal vertex; 11–16 right and 12–19 left marginal cirri; and dorsal cilia about 5 μm long. The basic morphogenetic process in Q. subtropica n. sp. is consistent with that of the type species, Quadristicha setigera. Phylogenetic analyses based on small subunit ribosomal DNA sequence data reveal that the systematic position of Q. subtropica n. sp. is rather unstable with low support values across the tree and the genus Quadristicha is not monophyletic.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yong Chi ◽  
Yuqing Li ◽  
Qianqian Zhang ◽  
Mingzhen Ma ◽  
Alan Warren ◽  
...  

Abstract Background Heterotrichous ciliates are common members of microeukaryote communities which play important roles in both the transfer of material and the flow of energy in aquatic food webs. This group has been known for over two centuries due to their large body size and cosmopolitan distribution. Nevertheless, species identification and phylogenetic relationships of heterotrichs remain challenging due to the lack of accurate morphological information and insufficient molecular data. Results The morphology and phylogeny of two heterotrichous ciliates, namely Gruberia foissneri spec. nov. and Linostomella vorticella (Ehrenberg, 1833) Aescht in Foissner et al., 1999, were studied using rigorous methods (living morphology, stained preparations, and small subunit rDNA sequence data). Gruberia foissneri spec. nov. is morphologically very similar to G. uninucleata Kahl, 1932, however, it can be distinguished from the latter by having more ciliary rows (about 32 vs. about 20) and macronuclear shape (sausage-shaped vs. ellipsoid). Based on a combination of previous and present studies, an improved diagnosis of L. vorticella is supplied and several taxonomic anomalies are clarified. In addition, phylogenetic analyses based on SSU rDNA sequence data support the generic assignment of these two species. Conclusions Modern ciliate taxonomy should be performed by means of detailed living observation, stained preparations and molecular information. For those species that have been reported in previous studies, it is necessary to provide as much useful information as possible using state-of-the-art methods in order to resolve taxonomic anomalies.


2020 ◽  
Author(s):  
Jingyi Wang ◽  
Jingbao Li ◽  
Yurui Wang ◽  
Saleh A. Al-Farraj ◽  
Chen Shao

Abstract Background: Spirotrich ciliates are one of the most diverse groupsin the phylum Ciliophora and are widely distributed in marine, freshwater, and terrestrial biotopes. Many nominal species are, however, poorly known and their systematic positions remain uncertain due to the lack of information concerning their infraciliature, morphogenesis, and gene sequences. In this paper, the morphology and morphogenesis of Bakuella (Pseudobakuella) guangdongica n. sp. were studied, in addition, genomic DNA was extracted in order to sequence the small subunit rDNA. Results: Bakuella (Pseudobakuella) guangdongica n. sp. is characterized by 150–225 µm in vivo; 35–42 adoral membranelles; three to five buccal, two frontoterminal and eight to 13 transverse + pretransverse cirri; midventral complex comprised of 10–20 midventral pairs and two midventral rows extending to transverse cirri; posterior part of marginal rows slightly overlapped; colorless cortical granules about 1 μm across, arranged in small groups; soil habitat. Its main ontogenetic features are: (1) in the proter, the parental adoral zone of membranelles is completely renewed by new structures; (2) in the opisthe, the oral primordium originates apokinetally, some old midventral cirri join the formation of frontoventral-transverse cirral anlagen; (3) the anlagen for marginal rows and dorsal kineties develop intrakinetally; and (4) the numerous macronuclear nodules fuse into a single mass before dividing. Phylogenetic analyses based on the SSU rDNA sequence suggests the non-monophyly of the genus Bakuella. Conclusions: The morphology, morphogenesis and molecular phylogeny of the new hypotrichous ciliate, Bakuella (Pseudobakuella) guangdongica n. sp. were studied, the phylogenetic analyses show that the Bakuella is polyphyletic in the SSU rDNA.


2020 ◽  
Author(s):  
Yong Chi ◽  
Yuqing Li ◽  
Qianqian Zhang ◽  
Mingzhen Ma ◽  
Alan Warren ◽  
...  

Abstract Background: Heterotrichous ciliates are common members of microeukaryote communities which play important roles in both the transfer of material and the flow of energy in aquatic food webs. This group has been known for over two centuries due to their large body size and cosmopolitan distribution. Nevertheless, species identification and phylogenetic relationships of heterotrichs remain challenging due to the lack of accurate morphological information and insufficient molecular data.Results: The morphology and phylogeny of two heterotrichous ciliates, namely Gruberia foissneri spec. nov. and Linostomella vorticella (Ehrenberg, 1833) Aescht in Foissner et al., 1999, were studied using rigorous methods (living morphology, stained preparations, and small subunit rDNA sequence data). Gruberia foissneri spec. nov. is morphologically very similar to G. uninucleata Kahl, 1932, however, it can be distinguished from the latter by having more ciliary rows (about 32 vs. about 20) and macronuclear shape (sausage-shaped vs. ellipsoid). Based on a combination of previous and present studies, an improved diagnosis of L. vorticella is supplied and several taxonomic anomalies are clarified. In addition, phylogenetic analyses based on SSU rDNA sequence data support the generic assignment of these two species.Conclusions: Modern ciliate taxonomy should be performed by means of detailed living observation, stained preparations and molecular information. For those species that have been reported in previous studies, it is necessary to provide as much useful information as possible using state-of-the-art methods in order to resolve taxonomic anomalies.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1912-1921 ◽  
Author(s):  
Xumiao Chen ◽  
Ying Yan ◽  
Xiaozhong Hu ◽  
Mingzhuang Zhu ◽  
Honggang Ma ◽  
...  

The morphology and morphogenesis of the stylonychine hypotrich Rigidohymena candens (Kahl, 1932) Berger, 2011, isolated from garden soil in Qingdao, China, were investigated using live observation and protargol impregnation methods. The Qingdao isolate possesses all diagnostic morphological characters of R. candens. The main events during binary fission are as follows: (i) the proter retains the parental adoral zone of membranelles entirely, whereas the old undulating membranes dedifferentiate into an anlage that gives rise to the leftmost frontal cirrus and the new undulating membranes of the proter; (ii) five streaks of fronto-ventral-transverse cirral anlagen are segmented in the pattern 3 : 3 : 3 : 4 : 4 from left to right, which form two frontal, four frontoventral, one buccal, five ventral and five transverse cirri, respectively; (iii) dorsal morphogenesis is in the typical Oxytricha pattern; (iv) three caudal cirri are formed, one at the posterior end of each of dorsal kineties 1, 2 and 4; and (v) the postoral ventral cirrus V/3 is not involved in primordia formation. The morphological and morphogenetic observations and phylogenetic analyses based on the small-subunit rDNA sequence data support the validity of Rigidohymena Berger, 2011 and its systematic position in the subfamily Stylonychinae.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1155-1164 ◽  
Author(s):  
Xumiao Chen ◽  
Miao Miao ◽  
Honggang Ma ◽  
Chen Shao ◽  
Khaled A. S. Al-Rasheid

A novel stichotrich ciliate, Strongylidium orientale sp. nov., was discovered from a mangrove river in Hong Kong, southern China, and its morphology was investigated through observations in vivo and after protargol impregnation. Cells are 80–120×35–50 µm in vivo and fusiform in shape, with rounded anterior and tapered posterior ends. It is characterized by its brackish habitat and by the presence of two types of cortical granules arranged irregularly throughout the cortex. Morphogenetic events of cell division and physiological reorganization are described. The main ontogenetic features were: (i) only the posterior portion of the parental adoral zone of membranelles was renewed by dedifferentiation of the old structures; (ii) the oral primordium in the opisthe occurred apokinetally; (iii) the left and right ventral rows originated intrakinetally and the final left ventral row was spliced from two cirri from the frontoventral cirral anlage, a short cirral row from the anlage for the right ventral row and a long cirral row which was formed from the whole anlage of the left ventral row; (iv) the marginal rows developed intrakinetally; (v) the dorsal kineties replicated entirely de novo and did not fragment; and (vi) the two macronuclear nodules fused into a mass and then divided. Based on small-subunit rRNA gene sequences, phylogenetic analyses showed a close relationship with its congener Strongylidium pseudocrassum and with the genus Pseudouroleptus.


2013 ◽  
Vol 87 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Bernard L. Cohen ◽  
Maria Aleksandra Bitner

We present here the first report based on phylogenetic analyses of small subunit (SSU/18S) and large subunit (LSU/28S) ribosomal DNA (rDNA) sequences from a wider-than-token sample of rhynchonellide articulate brachiopods, with data from 11 of ∼20 extant genera (12 species) belonging to all four extant superfamilies. Data exploration by network and saturation analyses shows that the molecular sequence data are free from major aberrations and are suitable for phylogenetic reconstruction despite the presence of large deletions in four SSU rDNA sequences. Although molecular sequence analyses cannot directly illuminate the systematics of fossils, the independent, genealogical evidence and phylogenetic inferences about extant forms that they make possible are highly relevant to paleontological systematics because they highlight the limitations of evolutionary inference from morphology. Parsimony, distance, maximum likelihood (no clock) and Bayesian (relaxed-clock) analyses all find a tree topology that disagrees strongly with the existing superfamily classification. All tested phylogenetic reconstructions agree that the taxa analyzed fall into three clades designated A1, A2, and B that reflect two major divergence events. The relaxed-clock analysis indicates that clades A and B diverged in the Paleozoic, while clades A1 and A2 reflect Permo-Triassic (and later) events. Morphological homoplasy and possible gene co-option are suggested as the main sources for the discord between the morpho-classification, the results of cladistic analyses of morphology, and the relationships reconstructed from molecular sequences. The origin, function and evolutionary implications of the deletion-bearing rhynchonellide SSU rDNA sequences are briefly discussed in relation to pseudogenes and concerted evolution in the rDNA genomic region.


Sign in / Sign up

Export Citation Format

Share Document