scholarly journals An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria

2011 ◽  
Vol 61 (1) ◽  
pp. 170-183 ◽  
Author(s):  
Virginie Gaget ◽  
Simonetta Gribaldo ◽  
Nicole Tandeau de Marsac

The use of morphological characters for the classification of cyanobacteria has often led to ambiguous strain assignment. In the past two decades, the availability of sequences, such as those of the 16S rRNA, nif, cpc and rpoC1 genes, and the use of metagenomics, has steadily increased and has made the reconstruction of evolutionary relationships of some cyanobacterial groups possible in addition to improving strain assignment. Conserved indels (insertions/deletions) are present in all cyanobacterial RpoB (β subunit of RNA polymerase) sequences presently available in public databases. These indels are located in the Rpb2_6 domain of RpoB, which is involved in DNA binding and DNA-directed RNA polymerase activity. They are variable in length (6–44 aa) and sequence, and form part of what appears to be a longer signature sequence (43–81 aa). Indeed, a number of these sequences turn out to be distinctive among several strains of a given genus and even among strains of a given species. These signature sequences can thus be used to identify cyanobacteria at a subgenus level and can be useful molecular markers to establish the taxonomic positions of cyanobacterial isolates in laboratory cultures, and/or to assess cyanobacterial biodiversity in space and time in natural ecosystems.

2021 ◽  
pp. molcanther.MCT-20-0489-A.2020
Author(s):  
Daniel A. R. Heisey ◽  
Sheeba Jacob ◽  
Timonthy L Lochmann ◽  
Richard Kurupi ◽  
Maninderjit S. Ghotra ◽  
...  

1984 ◽  
Vol 4 (1) ◽  
pp. 188-194
Author(s):  
B S Ben-Tzvi ◽  
Y Koltin ◽  
M Mevarech ◽  
A Tamarkin

RNA polymerase activity is associated with the double-stranded RNA virions of Ustilago maydis. The reaction products of the polymerase activity are single-stranded RNA molecules. The RNA molecules synthesized are homologous to the three classes of double-stranded RNA molecules that typify the viral genome. The single-stranded RNA synthesized is released from the virions. The molecular weight of the single-stranded RNA transcripts is about half the size of the double-stranded RNA segments, and thus, it appears that in the in vitro reaction, full-length transcripts can be obtained.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Huan Chen ◽  
Yingjuan Qian ◽  
Xin Chen ◽  
Zhiyang Ruan ◽  
Yuetian Ye ◽  
...  

ABSTRACT The life cycle of influenza A virus (IAV) is modulated by various cellular host factors. Although previous studies indicated that IAV infection is controlled by HDAC6, the deacetylase involved in the regulation of PA remained unknown. Here, we demonstrate that HDAC6 acts as a negative regulator of IAV infection by destabilizing PA. HDAC6 binds to and deacetylates PA, thereby promoting the proteasomal degradation of PA. Based on mass spectrometric analysis, Lys(664) of PA can be deacetylated by HDAC6, and the residue is crucial for PA protein stability. The deacetylase activity of HDAC6 is required for anti-IAV activity, because IAV infection was enhanced due to elevated IAV RNA polymerase activity upon HDAC6 depletion and an HDAC6 deacetylase dead mutant (HDAC6-DM; H216A, H611A). Finally, we also demonstrate that overexpression of HDAC6 suppresses IAV RNA polymerase activity, but HDAC6-DM does not. Taken together, our findings provide initial evidence that HDAC6 plays a negative role in IAV RNA polymerase activity by deacetylating PA and thus restricts IAV RNA transcription and replication. IMPORTANCE Influenza A virus (IAV) continues to threaten global public health due to drug resistance and the emergence of frequently mutated strains. Thus, it is critical to find new strategies to control IAV infection. Here, we discover one host protein, HDAC6, that can inhibit viral RNA polymerase activity by deacetylating PA and thus suppresses virus RNA replication and transcription. Previously, it was reported that IAV can utilize the HDAC6-dependent aggresome formation mechanism to promote virus uncoating, but HDAC6-mediated deacetylation of α-tubulin inhibits viral protein trafficking at late stages of the virus life cycle. These findings together will contribute to a better understanding of the role of HDAC6 in regulating IAV infection. Understanding the molecular mechanisms of HDAC6 at various periods of viral infection may illuminate novel strategies for developing antiviral drugs.


1972 ◽  
Vol 11 (11) ◽  
pp. 3105-3110 ◽  
Author(s):  
J.F. Payne ◽  
Arya K. Bal

2010 ◽  
Vol 31 (7) ◽  
pp. 2107-2109 ◽  
Author(s):  
Bok-Hui Lee ◽  
Hyun-Jung Seo ◽  
So-Hyun Kim ◽  
Woong Jung ◽  
Dong-Woon Kim ◽  
...  

Nature ◽  
1970 ◽  
Vol 228 (5269) ◽  
pp. 373-375 ◽  
Author(s):  
JEFF HAYWOOD ◽  
STEVEN P. R. ROSE ◽  
P. P. G. BATESON

Sign in / Sign up

Export Citation Format

Share Document