scholarly journals Virgibacillus soli sp. nov., isolated from mountain soil

2011 ◽  
Vol 61 (2) ◽  
pp. 275-280 ◽  
Author(s):  
P. Kämpfer ◽  
A. B. Arun ◽  
H.-J. Busse ◽  
S. Langer ◽  
C.-C. Young ◽  
...  

A Gram-positive bacterium (strain CC-YMP-6T) was isolated from soil samples collected from Yang-Ming Mountain, Taiwan. On the basis of 16S rRNA gene sequence analysis, strain CC-YMP-6T clearly belonged to the genus Virgibacillus and was most closely related to the type strains of Virgibacillus halophilus (96.2 % similarity) and Virgibacillus kekensis (96.3 %). The predominant isoprenoid quinone was menaquinone MK-7 and the polar lipid profile was composed of the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid plus moderate amounts of two unidentified aminophospholipids and a phospholipid. The polyamine pattern comprised spermidine as the single major component with spermine and putrescine present in minor amounts. The major fatty acids of strain CC-YMP-6T were iso-C15 : 0 and anteiso-C15 : 0. The results of physiological and biochemical tests allowed the clear phenotypic differentiation of strain CC-YMP-6T from all recognized species of the genus Virgibacillus. Strain CC-YMP-6T is therefore considered to represent a novel species of the genus Virgibacillus, for which the name Virgibacillus soli sp. nov. is proposed. The type strain is CC-YMP-6T (=DSM 22952T=CCM 7714T).

2006 ◽  
Vol 56 (9) ◽  
pp. 2193-2197 ◽  
Author(s):  
Qiang Gu ◽  
Hongli Luo ◽  
Wen Zheng ◽  
Zhiheng Liu ◽  
Ying Huang

A high-G+C-content, Gram-positive bacterium, strain D10T, was isolated from the root of Oroxylum indicum, a Chinese medicinal plant. Based on 16S rRNA gene sequence analysis, strain D10T was a member of the genus Pseudonocardia and was most closely related, albeit loosely, to Pseudonocardia halophobica. Morphological and chemotaxonomic characteristics support the affiliation of strain D10T to the genus Pseudonocardia. Results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain D10T from related Pseudonocardia species. Strain D10T (=CGMCC 4.3143T=DSM 44984T) therefore represents a novel species, for which the name Pseudonocardia oroxyli sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2831-2837 ◽  
Author(s):  
Peter Kämpfer ◽  
Karin Martin ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1396T) producing a yellow pigment, was isolated from the healthy internal stem tissue of post-harvest cotton (Gossypium hirsutum, cultivar ‘DES-119’) grown at the Plant Breeding Unit at the E. V. Smith Research Center in Tallassee (Macon county), AL, USA. 16S rRNA gene sequence analysis of strain JM-1396T showed high sequence similarity values to the type strains of Novosphingobium mathurense, Novosphingobium panipatense (both 98.6 %) and Novosphingobium barchaimii (98.5 %); sequence similarities to all other type strains of species of the genus Novosphingobium were below 98.3 %. DNA–DNA pairing experiments of the DNA of strain JM-1396T and N. mathurense SM117T, N. panipatense SM16T and N. barchaimii DSM 25411T showed low relatedness values of 8 % (reciprocal 7 %), 24 % (reciprocal 26 %) and 19 % (reciprocal 25 %), respectively. Ubiquinone Q-10 was detected as the dominant quinone; the fatty acids C18 : 1ω7c (71.0 %) and the typical 2-hydroxy fatty acid, C14 : 0 2-OH (11.7 %), were detected as typical components. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. The polyamine pattern contained the major compound spermidine and only minor amounts of other polyamines. All these data revealed that strain JM-1396T represents a novel species of the genus Novosphingobium. For this reason we propose the name Novosphingobium gossypii sp. nov. with the type strain JM-1396T ( = LMG 28605T = CCM 8569T = CIP 110884T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 596-600 ◽  
Author(s):  
Huo Hu ◽  
Hai-Peng Lin ◽  
Qingyi Xie ◽  
Lei Li ◽  
Xin-Qiang Xie ◽  
...  

A Streptomyces-like strain, 172205T, was obtained from mangrove soil collected at Qinglan Harbour, Wenchang, Hainan, China. The strain was characterized by white aerial mycelium and long spore chains. Comparison of 16S rRNA gene sequences indicated that the strain represents a novel member of the genus Streptomyces, exhibiting highest levels of similarity (<98.29 %) to the type strains of members of the genus Streptomyces. However, DNA–DNA relatedness and phenotypic data readily distinguished strain 172205T from phylogenetically related type strains. The predominant menaquinones were MK-9(H6) and MK-9(H8). The major fatty acids were iso-C15 : 0 (10.31 %), anteiso-C15 : 0 (35.19 %), iso-C16 : 0 (20.24 %) and anteiso-C17 : 0 (10.05 %). The diagnostic phospholipid was phosphatidylethanolamine. The cell wall contained ll-diaminopimelic acid and meso-diaminopimelic acid and whole-cell hydrolysates contained ribose, galactose and glucose. The results of DNA–DNA hybridization, physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain 172205T from phylogenetically related type strains. Therefore, strain 172205T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces qinglanensis sp. nov. is proposed. The type strain is 172205T ( = CGMCC 4.6825T  = DSM 42035T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2056-2061 ◽  
Author(s):  
Kim Heylen ◽  
Bram Vanparys ◽  
Filip Peirsegaele ◽  
Liesbeth Lebbe ◽  
Paul De Vos

Three Gram-negative, rod-shaped, non-spore-forming, nitrate-reducing isolates (R-32746, R-32768T and R-32729T) were obtained from soil. Analysis of repetitive sequence-based PCR showed that the three isolates represented two different strains. 16S rRNA gene sequence analysis and DNA–DNA hybridization placed them within the genus Stenotrophomonas and revealed that they were genotypically different from each other and from all recognized Stenotrophomonas species. Analysis of the fatty acid composition and physiological and biochemical tests allowed differentiation from their closest phylogenetic neighbours. They are therefore considered to represent two novel species, for which the names Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov. are proposed, with strains R-32768T (=LMG 23958T=DSM 18941T) and R-32729T (=LMG 23959T=DSM 18929T), respectively, as the type strains.


2010 ◽  
Vol 60 (4) ◽  
pp. 824-827 ◽  
Author(s):  
P. Kämpfer ◽  
Chiu-Chung Young ◽  
H.-J. Busse ◽  
Jiunn-Nan Chu ◽  
P. Schumann ◽  
...  

A Gram-stain-positive, coccoid, non-endospore-forming actinobacterium (strain CC-12602T) was isolated from a spawn used for growing the edible mushroom Agaricus brasiliensis in the laboratory. On the basis of 16S rRNA gene sequence analysis, strain CC-12602T was shown to belong to the genus Microlunatus and was related most closely to the type strains of Microlunatus ginsengisoli (96.1 % similarity), M. phosphovorus (95.9 %), M. panaciterrae (95.8 %) and M. aurantiacus (95.5 %). The quinone system comprised menaquinone MK-9(H4) as the major component and the polyamine pattern consisted of spermidine and spermine as major compounds. The predominant polar lipids were phosphatidylglycerol and unknown phospholipid PL3. Moderate amounts of diphosphatidylglycerol, an unknown glycolipid and three unknown phospholipids and minor amounts of an unknown phospholipid and a polar lipid were detected. The peptidoglycan type was A3γ′, based on ll-2,6-diaminopimelic acid with an interpeptide bridge consisting of a single glycine residue and a second glycine residue at position 1 of the peptide subunit. Peptidoglycan structure and major fatty acids (anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0) supported the affiliation of strain CC-12602T to the genus Microlunatus. The results of physiological and biochemical tests allowed strain CC-12602T to be differentiated phenotypically from recognized Microlunatus species. Strain CC-12602T is therefore considered to represent a novel species of the genus Microlunatus, for which the name Microlunatus soli sp. nov. is proposed. The type strain is CC-12602T (=DSM 21800T =CCM 7685T).


2010 ◽  
Vol 60 (2) ◽  
pp. 271-274 ◽  
Author(s):  
Jenny Schäfer ◽  
Karin Martin ◽  
Peter Kämpfer

A Gram-positive, coccoid-shaped organism (strain 02-Je-010T), forming yellow-pigmented colonies was isolated from the wall of an indoor environment. On the basis of 16S rRNA gene sequence similarity studies, it was shown that strain 02-Je-010T belongs to the genus Citricoccus with sequence similarities of 98.9 % to Citricoccus alkalitolerans DSM 15665T and 98.6 % to Citricoccus muralis DSM 14442T. Cell-wall sugars were mannose and glucose. The diagnostic diamino acid of the peptidoglycan was lysine. The major menaquinones detected were MK-9(H2) and MK-8(H2). The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol and moderate amounts of two unknown phospholipids and two unknown glycolipids. The fatty acid profile comprised major amounts of anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0. All these data supported the affiliation of strain 02-Je-010T to the genus Citricoccus. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 02-Je-010T from the two recognized Citricoccus species. For these reasons, strain 02-Je-010T represents a novel species, for which the name Citricoccus parietis sp. nov. is proposed, with the type strain 02-Je-010T (=CCUG 57388T=CCM 7609T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1213-1216 ◽  
Author(s):  
Huapeng Fan ◽  
Yanfen Xue ◽  
Yanhe Ma ◽  
Antonio Ventosa ◽  
William D. Grant

A novel haloalkaliphilic archaeon, strain 8W8T, was isolated from Lake Zabuye, on the Tibetan Plateau, China. On the basis of 16S rRNA gene sequence analysis, strain 8W8T was shown to belong to the genus Halorubrum and was related to Halorubrum vacuolatum (96·7 % sequence similarity), Halorubrum saccharovorum (96·0 %), Halorubrum lacusprofundi (95·4 %) and Halorubrum sodomense (95·3 %). The phylogenetic distance from any species within the other genera of Halobacteriales was lower than 90 %. The major polar lipids of strain 8W8T were C20C20 and C20C25 derivatives of phosphatidylglycerol phosphate and phosphatidylglycerol phosphate methyl ester. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 8W8T from the eight Halorubrum species with validly published names. Therefore, strain 8W8T represents a novel species, for which the name Halorubrum tibetense sp. nov. is proposed, with the type strain 8W8T (=AS 1.3239T=JCM 11889T).


2006 ◽  
Vol 56 (3) ◽  
pp. 541-547 ◽  
Author(s):  
Ingvild Wartiainen ◽  
Anne Grethe Hestnes ◽  
Ian R. McDonald ◽  
Mette M. Svenning

A Gram-negative, rod-shaped, non-motile, non-spore-forming, pink-pigmented bacterium, SV97T, was isolated from a wetland soil near Ny-Ålesund, Svalbard Islands, Norway (78° N). On the basis of 16S rRNA gene sequence similarity, strain SV97T was shown to belong to the Alphaproteobacteria and was highly related to a number of non-characterized Methylocystis strains with GenBank accession nos AJ458507 and AJ458502 (100 %) and AF177299, AJ458510, AJ458467, AJ458471, AJ431384, AJ458475, AJ458484, AJ458501 and AJ458466 (99 %). The most closely related type strains were Methylocystis parvus OBBPT (97·2 %) and Methylocystis echinoides IMET 10491T (97 %). The closest related recognized species within the genus Methylosinus was Methylosinus sporium NCIMB 11126T (96·0 % similarity). Chemotaxonomic and phenotypic data (C18 : 1 ω8 as the major fatty acid, non-motile, no rosette formation) supported the affiliation of strain SV97T to the genus Methylocystis. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV97T from the two recognized Methylocystis species. Strain SV97T therefore represents a novel species, for which the name Methylocystis rosea sp. nov. is proposed, with the type strain SV97T (=DSM 17261T=ATCC BAA-1196T).


2010 ◽  
Vol 60 (4) ◽  
pp. 909-913 ◽  
Author(s):  
Peter Kämpfer ◽  
Jenny Schäfer ◽  
Nicole Lodders ◽  
Hans-Jürgen Busse

A Gram-stain-positive, rod-shaped, non-endospore-forming, orange-pigmented (coloured) actinobacterium (01-Je-003T) was isolated from the wall of an indoor environment primarily colonized with moulds. On the basis of 16S rRNA gene sequence similarity studies, strain 01-Je-003T was shown to belong to the genus Brevibacterium and was most similar to the type strains of Brevibacterium picturae (98.8 % similarity), Brevibacterium marinum (97.3 %) and Brevibacterium aurantiacum (97.2 %). Chemotaxonomic data [predominant quinone menaquinone MK-8(H2); polar lipid profile consisting of major compounds diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid; characteristic cell-wall diamino acid meso-diaminopimelic acid; polyamine pattern showing major compounds putrescine and cadaverine; major fatty acids anteiso-C15 : 0 and anteiso-C17 : 0] supported the affiliation of strain 01-Je-003T to the genus Brevibacterium. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 01-Je-003T from the two most closely related species, B. picturae and B. marinum. Strain 01-Je-003T therefore represents a novel species, for which the name Brevibacterium sandarakinum sp. nov. is proposed, with the type strain 01-Je-003T (=DSM 22082T =CCM 7649T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1615-1619 ◽  
Author(s):  
Myung Kyum Kim ◽  
Wan-Taek Im ◽  
Jun-Gyo In ◽  
Sung-Hoon Kim ◽  
Deok-Chun Yang

A Gram-negative, non-spore-forming, rod-shaped, motile bacterium, strain Ko06T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Ko06T belongs to the Gammaproteobacteria, and the highest levels of sequence similarity were with Thermomonas brevis LMG 21746T (98.4 %), Thermomonas fusca LMG 21737T (97.7 %), Thermomonas haemolytica A50-7-3T (96.5 %) and Thermomonas hydrothermalis SGM-6T (95.8 %). Chemotaxonomic data revealed that strain Ko06T possesses ubiquinone Q-8 and that the predominant fatty acids are C15 : 0 iso, C11 : 0 iso and C11 : 0 iso 3-OH, all of which corroborated assignment of the strain to the genus Thermomonas. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain Ko06T represents a distinct species. On the basis of these data, strain Ko06T (=KCTC 12540T=NBRC 101155T) should be classified as the type strain of a novel Thermomonas species, for which the name Thermomonas koreensis sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document