scholarly journals Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment

2010 ◽  
Vol 60 (4) ◽  
pp. 909-913 ◽  
Author(s):  
Peter Kämpfer ◽  
Jenny Schäfer ◽  
Nicole Lodders ◽  
Hans-Jürgen Busse

A Gram-stain-positive, rod-shaped, non-endospore-forming, orange-pigmented (coloured) actinobacterium (01-Je-003T) was isolated from the wall of an indoor environment primarily colonized with moulds. On the basis of 16S rRNA gene sequence similarity studies, strain 01-Je-003T was shown to belong to the genus Brevibacterium and was most similar to the type strains of Brevibacterium picturae (98.8 % similarity), Brevibacterium marinum (97.3 %) and Brevibacterium aurantiacum (97.2 %). Chemotaxonomic data [predominant quinone menaquinone MK-8(H2); polar lipid profile consisting of major compounds diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid; characteristic cell-wall diamino acid meso-diaminopimelic acid; polyamine pattern showing major compounds putrescine and cadaverine; major fatty acids anteiso-C15 : 0 and anteiso-C17 : 0] supported the affiliation of strain 01-Je-003T to the genus Brevibacterium. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 01-Je-003T from the two most closely related species, B. picturae and B. marinum. Strain 01-Je-003T therefore represents a novel species, for which the name Brevibacterium sandarakinum sp. nov. is proposed, with the type strain 01-Je-003T (=DSM 22082T =CCM 7649T).

2010 ◽  
Vol 60 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Jenny Schäfer ◽  
Karin Martin ◽  
Peter Kämpfer

A novel Gram-stain-positive, mycelium-forming actinobacterium (05-Be-005T) isolated from the wall of an indoor environment was studied for its taxonomic position. The isolated strain formed a substrate mycelium that fragmented into rod-shaped cells and showed an aerial mycelium on medium M79. On the basis of 16S rRNA gene sequence similarity studies, strain 05-Be-005T was shown to belong to the genus Prauserella, closely related to Prauserella rugosa DSM 43194T (96.6 % similarity), Prauserella alba YIM 90005T (95.9 %) and Prauserella halophila YIM 90001T (95.4 %). The predominant menaquinone was MK-9(H4); whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid of the cell wall and arabinose and galactose as the main sugars. Mycolic acids were absent. The polar lipid profile consisted of the lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylinositol, phosphatidylserine and an unknown phospholipid. Major fatty acids C16 : 0 iso, C16 : 0, C17 : 1 ω8c and C17 : 1 ω6c supported the affiliation of strain 05-Be-005T to the genus Prauserella. The results of physiological and biochemical tests allowed clear phenotypic differentiation of strain 05-Be-005T from the three known Prauserella species. Strain 05-Be-005T represents a novel Prauserella species, for which we propose the name Prauserella muralis sp. nov., with the type strain 05-Be-005T (=CCUG 57426T =NRRL B-24780T =CCM 7635T=DSM 45305T).


2006 ◽  
Vol 56 (2) ◽  
pp. 389-392 ◽  
Author(s):  
Peter Kämpfer ◽  
Olle Terenius ◽  
Jenny M. Lindh ◽  
Ingrid Faye

A Gram-positive, aerobic, non-motile strain, H2.16BT, isolated from the midgut of the mosquito Anopheles arabiensis was investigated using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity studies, strain H2.16BT was shown to belong to the genus Janibacter, being most closely related to Janibacter melonis (98·3 %), Janibacter terrae (98·5 %) and Janibacter limosus (98·5 %). Chemotaxonomic data (meso-diaminopimelic acid as the diagnostic diamino acid in the cell wall and major fatty acids of iso-C16 : 0, C17 : 1 ω8c and C17 : 0) supported the allocation of the strain to the genus Janibacter. The results of DNA–DNA hybridization and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain H2.16BT from closely related species. Thus, H2.16BT represents a novel species of the genus Janibacter, for which the name Janibacter anophelis sp. nov. is proposed. The type strain is H2.16BT (=CCUG 49715T=CIP 108728T).


Author(s):  
Peter Kämpfer ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Meina Neumann-Schaal ◽  
Alexis Criscuolo ◽  
...  

A Gram-positive, non-spore-forming actinobacterium (IMT-300T) was isolated from soil amended with humic acid in Malvern, AL, USA. This soil has been used for 50+years for the cultivation of earthworms for use as fish bait. Based on 16S rRNA gene sequence similarity studies, strain IMT-300T was shown to belong to the genus Leucobacter and was closely related to the type strain of ‘Leucobacter margaritiformis’ L1T (97.8%). Similarity to all other type strains of Leucobacter species was lower than 97.2 %. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the IMT-300T genome assembly and those of the closest relative Leucobacter type strain were 81.4 and 23.3 % ( Leucobacter chironomi ), respectively. The peptidoglycan of strain IMT-300T contained l-2,4-diaminobutyric acid as the diagnostic diamino acid. In addition, glycine, d- and l-alanine and d-glutamic acid were found. The peptidoglycan type represents a variant of B2δ (B11). The major quinones were menaquinones MK-10 and MK-11. The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and moderate to minor amounts of two unidentified phospholipids, two unidentified glycolipids and an unidentified aminophospholipid. The polyamine pattern contained major amounts of spermidine and spermine. Strain IMT-300T contained the major fatty acids C15 : 0 anteiso, C16 : 0 iso and C17 : 0 anteiso, like other members of the genus Leucobacter . The results of ANI and dDDH analyses and physiological and biochemical tests allowed a genotypic and phenotypic differentiation of strain IMT-300T from the most closely related Leucobacter species. Strain IMT-300T represents a novel Leucobacter species, for which we propose the name Leucobacter soli sp. nov., with the type strain IMT-300T (CIP 111803T=DSM 110505T=CCM 9020T=LMG 31600T).


2010 ◽  
Vol 60 (2) ◽  
pp. 271-274 ◽  
Author(s):  
Jenny Schäfer ◽  
Karin Martin ◽  
Peter Kämpfer

A Gram-positive, coccoid-shaped organism (strain 02-Je-010T), forming yellow-pigmented colonies was isolated from the wall of an indoor environment. On the basis of 16S rRNA gene sequence similarity studies, it was shown that strain 02-Je-010T belongs to the genus Citricoccus with sequence similarities of 98.9 % to Citricoccus alkalitolerans DSM 15665T and 98.6 % to Citricoccus muralis DSM 14442T. Cell-wall sugars were mannose and glucose. The diagnostic diamino acid of the peptidoglycan was lysine. The major menaquinones detected were MK-9(H2) and MK-8(H2). The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol and moderate amounts of two unknown phospholipids and two unknown glycolipids. The fatty acid profile comprised major amounts of anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0. All these data supported the affiliation of strain 02-Je-010T to the genus Citricoccus. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 02-Je-010T from the two recognized Citricoccus species. For these reasons, strain 02-Je-010T represents a novel species, for which the name Citricoccus parietis sp. nov. is proposed, with the type strain 02-Je-010T (=CCUG 57388T=CCM 7609T).


2011 ◽  
Vol 61 (2) ◽  
pp. 237-241 ◽  
Author(s):  
E. Martin ◽  
K. Klug ◽  
A. Frischmann ◽  
H.-J. Busse ◽  
P. Kämpfer ◽  
...  

Two Gram-stain-positive, non-motile, non-spore-forming cocci (strains MK-7T and MPA-33T) were isolated from poultry houses. Strain MK-7T was isolated on marine broth agar from coquina, a food supplement for female ducks used in a duck-fattening farm. Strain MPA-33T was isolated from the air of a turkey house on TSA after filter sampling. On the basis of 16S rRNA gene sequence similarity studies, both strains were shown to belong to the genus Jeotgalicoccus; MK-7T was most closely related to Jeotgalicoccus psychrophilus YKJ-115T (99.3 % similarity) and MPA-33T was most closely related to Jeotgalicoccus halotolerans YKJ-101T (98.8 %). The quinone system of MK-7T was composed of equal amounts of menaquinones MK-7 and MK-6 and that of MPA-33T contained 76 % MK-7 and 24 % MK-6. The polar lipid profile of strain MK-7T consisted of the major compounds diphosphatidylglycerol and phosphatidylglycerol and six unidentified lipids present in minor to moderate amounts. In strain MPA-33T, diphosphatidylglycerol was the single predominant lipid, whereas phosphatidylglycerol was detected in moderate amounts. In addition, one unidentified phospholipid and four unidentified lipids were detected. Fatty acid profiles with iso-15 : 0 and anteiso-15 : 0 as major fatty acids supported the affiliation of the strains to the genus Jeotgalicoccus. The results of physiological and biochemical tests as well as DNA–DNA hybridizations allowed clear phenotypic differentiation of strains MK-7T and MPA-33T from the most closely related species. Strains MK-7T and MPA-33T therefore represent novel species, for which the names Jeotgalicoccus coquinae sp. nov. (type strain MK-7T =DSM 22419T =CCM 7682T =CCUG 57956T) and Jeotgalicoccus aerolatus sp. nov. (type strain MPA-33T =DSM 22420T =CCM 7679T =CCUG 57953T) are proposed.


2010 ◽  
Vol 60 (2) ◽  
pp. 393-396 ◽  
Author(s):  
P. Kämpfer ◽  
S. Langer ◽  
E. Martin ◽  
U. Jäckel ◽  
H.-J. Busse

A Gram-stain-positive, coccoid, non-endospore-forming actinobacterium (Sj14aT) was isolated from the air of a duck barn on tryptone soy agar after filter sampling. On the basis of 16S rRNA gene sequence similarity studies, strain Sj14aT was shown to belong to the genus Dietzia and was most closely related to Dietzia schimae (98.7 %), Dietzia cercidiphylli (98.4 %) and Dietzia maris (98.6 %). The major menaquinone was MK-8 (H2). The polar lipid profile included the major components diphosphatidylglycerol, phosphatidylglycerol, an unknown polar lipid and two unknown glycolipids. Phosphatidylinositol and two phosphatidylinositol mannosides, as well as several other unknown lipids, were also detected. The polyamine pattern contained the major compounds spermine and spermidine. The fatty acid profile, containing C16 : 0, C17 : 0, C18 : 1 ω9c and 10-methyl C18 : 0 as major fatty acids, supported the affiliation of strain Sj14aT to the genus Dietzia. The results of physiological and biochemical tests and DNA–DNA hybridizations allowed a clear phenotypic differentiation of strain Sj14aT from the most closely related species of the genus Dietzia. Strain Sj14aT represents a novel species, for which the name Dietzia aerolata sp. nov. is proposed, with the type strain Sj14aT (=DSM 45334T =CCM 7659T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3900-3904 ◽  
Author(s):  
Jun-lian Gao ◽  
Fan-yang Lv ◽  
Xu-ming Wang ◽  
Mei Yuan ◽  
Ji-wei Li ◽  
...  

A novel Gram-stain-negative, aerobic, rod-shaped bacterium, designated strain 522T, was isolated from surface-sterilized root tissue of maize planted in Fangshan District of Beijing, China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belonged to the genus Flavobacterium and showed less than 93.9 % similarity to the type strains of all recognized species of the genus Flavobacterium. The predominant respiratory quinone was menaquinone-6 and the polar lipid profile was composed of the major lipids phosphatidylethanolamine, phosphatidylserine and two unidentified amino lipids. The major fatty acids were C15 : 0, iso-C15 : 0, iso-C15 : 1 G and iso-C16 : 0.The G+C content of the DNA was 37.7 mol%. The results of physiological and biochemical tests and the differences in fatty acid profiles allowed the clear phenotypic differentiation of strain 522T from closely related species of the genus Flavobacterium. Strain 522T therefore represents a novel species within the genus Flavobacterium, for which the name Flavobacterium endophyticum sp. nov. is proposed. The type strain is 522T ( = ACCC 19708T = DSM 29537T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 596-600 ◽  
Author(s):  
Huo Hu ◽  
Hai-Peng Lin ◽  
Qingyi Xie ◽  
Lei Li ◽  
Xin-Qiang Xie ◽  
...  

A Streptomyces-like strain, 172205T, was obtained from mangrove soil collected at Qinglan Harbour, Wenchang, Hainan, China. The strain was characterized by white aerial mycelium and long spore chains. Comparison of 16S rRNA gene sequences indicated that the strain represents a novel member of the genus Streptomyces, exhibiting highest levels of similarity (<98.29 %) to the type strains of members of the genus Streptomyces. However, DNA–DNA relatedness and phenotypic data readily distinguished strain 172205T from phylogenetically related type strains. The predominant menaquinones were MK-9(H6) and MK-9(H8). The major fatty acids were iso-C15 : 0 (10.31 %), anteiso-C15 : 0 (35.19 %), iso-C16 : 0 (20.24 %) and anteiso-C17 : 0 (10.05 %). The diagnostic phospholipid was phosphatidylethanolamine. The cell wall contained ll-diaminopimelic acid and meso-diaminopimelic acid and whole-cell hydrolysates contained ribose, galactose and glucose. The results of DNA–DNA hybridization, physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain 172205T from phylogenetically related type strains. Therefore, strain 172205T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces qinglanensis sp. nov. is proposed. The type strain is 172205T ( = CGMCC 4.6825T  = DSM 42035T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2420-2423 ◽  
Author(s):  
P. Kämpfer ◽  
J. Schäfer ◽  
N. Lodders ◽  
K. Martin

A Gram-positive, coccoid, non-endospore-forming actinobacterium (strain 12-Be-011T) was isolated from indoor wall material. Based on 16S rRNA gene sequence comparisons, strain 12-Be-011T was clearly shown to belong to the genus Microlunatus and was most closely related to Microlunatus panaciterrae Gsoil 954T (95.7 %), Microlunatus soli CC-12602T (94.9 %), Microlunatus ginsengisoli Gsoil 633T (94.8 %), Microlunatus aurantiacus YIM 45721T (95.5 %) and Microlunatus phosphovorus DSM 10555T (94.7 %). The cell-wall peptidoglycan contained ll-diaminopimelic acid as the diagnostic diamino acid. Mycolic acids were absent. The major menaquinone was MK-9(H4). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown phospholipids and one unknown glycolipid. The major fatty acids of iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 supported the affiliation of strain 12-Be-011T to the genus Microlunatus. Physiological and biochemical test results allowed a clear phenotypic differentiation of strain 12-Be-011T from all other species of the genus Microlunatus. Hence, strain 12-Be-011T can be regarded as a representative of a novel species, for which the name Microlunatus parietis sp. nov. is proposed, with the type strain 12-Be-011T (=DSM 22083T=CCM 7636T).


2011 ◽  
Vol 61 (3) ◽  
pp. 482-486 ◽  
Author(s):  
Sung M. Kim ◽  
Sae W. Park ◽  
Sang T. Park ◽  
Young M. Kim

A bacterial strain, PY2T, capable of oxidizing carbon monoxide, was isolated from a soil sample collected from a roadside at Yonsei University, Seoul, Korea. On the basis of 16S rRNA gene sequence analysis, strain PY2T was shown to belong to the genus Terrabacter and was most closely related to Terrabacter lapilli LR-26T (99.1 % similarity). Strain PY2T was characterized chemotaxonomically as having iso-C15 : 0 as the predominant fatty acid, MK-8(H4) as the major menaquinone, ll-diaminopimelic acid as the diagnostic diamino acid of the cell wall, as possessing a polar lipid profile that included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and unknown amino-containing phosphoglycolipids, and having a DNA G+C content of 75.6 mol%. DNA–DNA relatedness values between strain PY2T and the type strains of T. lapilli, Terrabacter tumescens, Terrabacter terrae and Terrabacter aerolatus were 20.0 %, 22.9 %, 35.9 % and 64.5 %, respectively. Based on the combined evidence from the phylogenetic analyses, chemotaxonomic data and DNA–DNA hybridization experiments, it is proposed that strain PY2T represents a novel species for which the name Terrabacter carboxydivorans sp. nov. is proposed. The type strain is PY2T (=KCCM 42922T=JCM 16259T).


Sign in / Sign up

Export Citation Format

Share Document