scholarly journals Roseovarius indicus sp. nov., isolated from deep-sea water of the Indian Ocean

2011 ◽  
Vol 61 (9) ◽  
pp. 2040-2044 ◽  
Author(s):  
Qiliang Lai ◽  
Huanzi Zhong ◽  
Jianning Wang ◽  
Jun Yuan ◽  
Fengqin Sun ◽  
...  

A taxonomic study was carried out on a novel bacterial strain, designated B108T, which was isolated from a polycyclic aromatic hydrocarbon (PAH)-degrading consortium, enriched from deep-sea water of the Indian Ocean. The isolate was Gram-reaction-negative, rod-shaped and non-motile. Growth of strain B108T was observed in 1–15 % (w/v) NaCl and at 10–39 °C and it was unable to degrade Tween 80 or gelatin. 16S rRNA gene sequence comparisons showed that strain B108T was most closely related to Roseovarius halotolerans HJ50T (97.1 % sequence similarity), followed by Roseovarius pacificus 81-2T (96.6 %) and Roseovarius aestuarii SMK-122T (95.2 %); other species shared <95.0 % sequence similarity. DNA–DNA hybridization tests showed that strain B108T had a low DNA–DNA relatedness to R. halotolerans HJ50T and R. pacificus 81-2T (48±4 % and 44±5 %, respectively). The predominant fatty acids were C16 : 0, C16 : 0 2-OH, summed feature 8 (C18 : 1ω7c/ω6c) and C19 : 0ω8c cyclo, which accounted for 84.2 % of the total cellular fatty acids. The G+C content of the chromosomal DNA was 63.6 mol%. The major respiratory quinone was ubiquinone 10 (Q10). Phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and some unidentified compounds were detected. These characteristics were in good agreement with those of members of the genus Roseovarius. The pufLM gene was also detected. According to its morphology, physiology, fatty acid composition and phylogenetic position based on 16S rRNA sequence data, the novel strain most appropriately belongs to the genus Roseovarius but can be readily distinguished from known species of this genus. Therefore, strain B108T represents a novel species, of the genus Roseovarius, for which the name Roseovarius indicus sp. nov. is proposed. The type strain is B108T ( = 2PR52-14T  = CCTCC AB 208233T  = LMG 24622T  = MCCC 1A01227T).

2019 ◽  
Vol 69 (4) ◽  
pp. 932-936 ◽  
Author(s):  
Qiliang Lai ◽  
Xiupian Liu ◽  
Jun Yuan ◽  
Shuchen Xie ◽  
Zongze Shao

A taxonomic study was carried out on strain CIC4N-9T, which was isolated from deep-sea water of the Indian Ocean. The bacterium was Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and non-motile. Growth was observed at salinities of 0–9% and at temperatures of 4–41 °C. The isolate was able to degrade gelatin but not aesculin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CIC4N-9T belonged to the genus Pararhodobacter , with the highest sequence similarity to the only recognized species, Pararhodobacter aggregans D1-19T (96.9 %). The average nucleotide identity and estimated DNA–DNA hybridization values between strain CIC4N-9T and P. aggregans D1-19T were 80.4 and 23.0 %, respectively. The principal fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0, C18 : 1ω7c 11-methyl, C18 : 0 and C17 : 0. The G+C content of the chromosomal DNA was 66.8 mol%. The sole respiratory quinone was determined to be Q-10. Phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, two unknown phospholipids, four unknown aminolipids and one unknown polar lipid were present. The combined genotypic and phenotypic data show that strain CIC4N-9T represents a novel species within the genus Pararhodobacter , for which the name Pararhodobacter marinus sp. nov. is proposed. The type strain is CIC4N-9T (=MCCC 1A01225T=KCTC 52336T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2325-2333 ◽  
Author(s):  
Lei Wang ◽  
Qiliang Lai ◽  
Xiupian Liu ◽  
Zongze Shao

A taxonomic study was carried out of strain K7T, which was isolated from deep-sea water collected from the Indian Ocean. The bacterium was Gram-stain-negative, aerobic, oxidase-negative, catalase-positive, rod-shaped and non-motile. Growth was observed at salinities of 0.5–10 % (optimum, 3 %), at a pH range of pH 6.0–10.0 (optimum, pH 7.0) and at temperatures of 10–40 °C (optimum, 28 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K7T belonged to the family Flavobacteriaceae , with the high sequence similarities to the genera Mesonia (92.2 %–94.4 %), Salinimicrobium (91.9 %–93.2 %), Salegentibacter (92.1 %–92.6 %), Leeuwenhoekiella (92.1 %–92.3 %), Gramella (91.9 %–92.1 %) and Zunongwangia (91.8 %–92.1 %). The principal fatty acids were iso-C15 : 0 (28.4 %), iso-C15 : 1G (14.2 %), summed feature 9 (iso-C17 : 1  ω9c and/or C16 : 0 10-methyl; 11.6 %), iso-C17 : 0 3-OH (10.0 %) and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 9.6 %). The G+C content of the chromosomal DNA was 35.8 mol%. The respiratory quinone was determined to be MK-6 (100 %). Phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipid and four unidentified lipids were detected. The combined genotypic and phenotypic data show that strain K7T represents a novel species of a novel genus, for which the name Paramesonia marina gen. nov., sp. nov. is proposed, with the type strain K7T (=MCCC 1A01093T=KCTC 52325T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1173-1178 ◽  
Author(s):  
Qiliang Lai ◽  
Xiupian Liu ◽  
Fenqing Sun ◽  
Zongze Shao

A Gram-staining negative, aerobic, oval-shaped bacterium, designated strain PTG4-2T, was isolated from deep-sea sediment of the Indian Ocean. Growth was observed with 1–9 % (w/v) NaCl with optimal growth with 3 %, at pH 6.0–10.0 with an optimum of pH 7.0, and at 4–40 °C with an optimum of 30 °C. Positive for catalase and oxidase. The results of a 16S rRNA gene sequence comparison indicated that PTG4-2T was most closely related to Acuticoccus yangtzensis JL1095T (97.3 %), followed by Acuticoccus kandeliae J103T (96.5 %), all other species shared <93 % sequence similarity. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that PTG4-2T forms a distinct lineage within the genus Acuticoccus , and revealed that the genus Acuticoccus forms a novel family-level clade in the order Rhizobiales . The ANI and the DNA–DNA hybridization estimate values between PTG4-2T and two type strains (A. yangtzensis JL1095T and A. kandeliae J103T) were 79.9–76.2 % and 23.1–20.8 %, respectively. PTG4-2T contained Q-10 as the predominant ubiquinone. The principal fatty acids (>5 %) were summed feature 8 [C18 : 1 ω7c/ω6c (72.2 %)], C18 : 0 (8.4 %), C20 : 1 ω7c (6.4 %) and C16 : 0 (6.3 %). The polar lipids consisted of phosphatidylglycerol, three unidentified phospholipids, two unidentified glycolipids, one unidentified aminolipid and one unknown lipid. The DNA G+C content of PTG4-2T is 69.2 mol%. On the basis of the polyphasic taxonomic evidence presented in this study, PTG4-2T should be classified as representing a novel species of the genus Acuticoccus , for which the name Acuticoccus sediminis sp. nov. is proposed, with the type strain PTG4-2T (=MCCC 1A01274T=KCTC 52323T). In addition, a novel family, Acuticoccaceae fam. nov., is proposed to accommodate the genus Acuticoccus .


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4428-4432 ◽  
Author(s):  
Qiliang Lai ◽  
Jianning Wang ◽  
Li Gu ◽  
Tianling Zheng ◽  
Zongze Shao

A taxonomic study was carried out on strain R8-12T, which was isolated from deep-sea water of the Indian Ocean during the screening of oil-degrading bacteria. The isolate was Gram-stain-negative, oxidase and catalase-positive. Growth was observed at salinities from 0.5 to 15 % (optimum 3 %), at pH from 6–10 (optimum 7–8) and at temperatures from 10 to 42 °C (optimum 28 °C). On the basis of 16S rRNA gene sequence similarity, strain R8-12T was shown to belong to the genus Alcanivorax and to be related to Alcanivorax venustensis DSM 13974T (97.2 %), A. dieselolei B-5T (95.0 %), A. balearicus MACL04T (94.6 %), A. hongdengensis A-11-3T (94.3 %), A. jadensis T9T (93.8 %), A. borkumensis SK2T (93.7 %) and A. pacificus W11-5T (93.7 %). The gyrB sequence similarities between R8-12T and other species of the genus Alcanivorax ranged from 77.9 % to 86.9 %. The major fatty acids were C16 : 0 (31.8 %), C18 : 1ω7c (20.3 %), C19 : 0ω8c cyclo (15.8 %) and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) (8.9 %). The polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE), two aminolipids (AL1–AL2) and two phospholipids (PL1–PL2). Three alkane hydroxylase (alkB) genes were identified in the genome. The G+C content of the chromosomal DNA was 66.1 mol%. DNA–DNA hybridization showed that strain R8-12T and A. venustensis DSM 13974T had a DNA–DNA relatedness of 63±3 %. According to its phenotypic features and fatty acid composition as well as the 16S rRNA and gyrB gene sequences, the novel strain represents a member of the genus Alcanivorax , but could be easily distinguished from all other known species of the genus Alcanivorax described to date. The name Alcanivorax marinus sp. nov. is proposed, with the type strain R8-12T ( = MCCC 1A00382T = LMG 24621T = CCTCC AB 208234T).


2019 ◽  
Vol 366 (22) ◽  
Author(s):  
Wanzhen Ding ◽  
Ping Liu ◽  
Yunping Xu ◽  
Jiasong Fang ◽  
Junwei Cao

ABSTRACT A novel Rhodobacteraceae bacterium, strain W43T, was isolated from a deep-sea water sample from the New Britain Trench. Strain W43T exhibited the highest 16S rRNA gene sequence similarity of 96.5% to Sedimentitalea nanhaiensis DSM 24252T, Phaeobacter gallaeciensis DSM 26640T, Phaeobacter inhibens DSM 16374T, and Phaeobacter porticola P97T. Phylogenetic analysis of the 16S rRNA gene and phylogenomic analysis of the genome showed that strain W43T formed an independent monophyletic branch within the family Rhodobacteraceae. Strain W43T was Gram-stain-negative, rod-shaped, and grew optimally at 16–20°C, pH 6.5–7.0 and 2% (w/v) NaCl. The principal fatty acids were C18:1ω7c/C18:1ω6c, major respiratory quinone was ubiquinone-10 and predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The 5 080 916 bp long genome, comprising a circular chromosome and four plasmids, exhibits a G + C content of 55.9 mol%. The combined phenotypic, chemotaxonomic and molecular data show that strain W43T represents a novel species of a novel genus, for which the name Parasedimentitalea marina gen. nov. sp. nov. is proposed (type strain W43T = MCCC 1K03532T = KCTC 62635T).


2011 ◽  
Vol 61 (2) ◽  
pp. 271-274 ◽  
Author(s):  
Qiliang Lai ◽  
Liping Wang ◽  
Yuhui Liu ◽  
Jun Yuan ◽  
Fengqin Sun ◽  
...  

A taxonomic study was carried out on strain P31T, which was isolated from a polycyclic aromatic hydrocarbon (PAH)-degrading consortium enriched with deep-sea water of the Indian Ocean. The isolate was Gram-reaction-negative, rod-shaped, motile by means of a polar flagellum and incapable of reducing nitrate to nitrite. Growth was observed at 0.5–8 % NaCl and at 10–41 °C. Strain P31T was unable to degrade Tween 80 or gelatin. The major respiratory quinone was ubiquinone 11 (Q-11). The dominant fatty acids were C18 : 1 ω7c (39.79 %), 11-methyl C18 : 1 ω7c (17.84 %), C19 : 0 cyclo ω8c (12.05 %) and C18 : 0 (6.09 %). The G+C content of the chromosomal DNA was 62.1 mol%. A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strain P31T and Parvibaculum lavamentivorans DS-1T formed a distinct lineage in the family Phyllobacteriaceae; these two strains showed 95.7 % sequence similarity, while similarities between P31T and other members of the genus Parvibaculum were below 93 %. Based on the genotypic and phenotypic data, strain P31T represents a novel species of the genus Parvibaculum, for which the name Parvibaculum indicum sp. nov. is proposed. The type strain is P31T (=CCTCC AB 208230T =LMG 24712T =MCCC 1A01132T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4523-4530 ◽  
Author(s):  
Chu-Jin Ruan ◽  
Jian Wang ◽  
Xiao-Wei Zheng ◽  
Lei Song ◽  
Ya-Xin Zhu ◽  
...  

A novel Gram-stain-negative, aerobic, motile by peritrichous flagella, oval to rod-shaped bacterium, designated strain 2CG4T, was isolated from a deep-sea water sample collected from the Northwest Indian Ocean. The results of phylogenetic analysis of both 16S rRNA gene and RpoC protein sequences indicated that this strain was affiliated with the genus Halovulum in the Amaricoccus clade of the family Rhodobacteraceae of the class Alphaproteobacteria , sharing 95.3 % similarity at the 16S rRNA gene sequence level with the type strain of Halovulum dunhuangense YYQ-30T, the only species in the genus Halovulum . The predominant fatty acids (>10 %) of 2CG4T were summed feature 8 (C18 : 1ω7c and/ or C18 : 1ω6c; 61.1 %) and cyclo-C19 : 0ω8c (15.6 %). The polar lipids of 2CG4T were phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and sulfoquinovosyldiacylglycerol. The only isoprenoid quinone of 2CG4T was ubiquinone-10. The DNA G+C content of 2CG4T was determined to be 69.4 %. The central gene pufLM for the photosynthetic reaction was not detected. No growth occurred for 2CG4T in the absence of NaCl. On the basis of these data, it is concluded that the 2CG4T represents a novel species of the genus Halovulum , for which the name Halovulum marinum sp. nov. is proposed. The type strain is 2CG4T (=CGMCC 1.16468T=JCM 32611T).


2011 ◽  
Vol 61 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Qiliang Lai ◽  
Zhiwei Yu ◽  
Jun Yuan ◽  
Fengqin Sun ◽  
Zongze Shao

A taxonomic study was carried out on a novel bacterial strain, designated C115T, isolated from a crude-oil-degrading consortium, enriched from deep-sea water of the Indian Ocean. Cells were Gram-negative short rods, mobile by means of a monopolar flagellum. Growth was observed at salinities of 0–7 % and at 10–43 °C. It was unable to degrade Tween 80 or gelatin. 16S rRNA gene sequence analysis showed that strain C115T was related most closely to Nitratireductor aquibiodomus NL21T (96.5 % similarity), Nitratireductor kimnyeongensis KY 101T (96.4 %) and Nitratireductor basaltis J3T (96.2 %). The predominant fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c, 81.8 %) and C18 : 0 (7.0 %). The G+C content of the chromosomal DNA of strain C115T was 59 mol%. Based on its morphology, physiology and fatty acid composition together with 16S rRNA gene sequence comparisons, the novel strain most appropriately belongs to the genus Nitratireductor, but can be distinguished readily from recognized species of the genus. Strain C115T is therefore considered to represent a novel species of the genus Nitratireductor, for which the name Nitratireductor indicus sp. nov. is proposed. The type strain is C115T (=RC92-7T =CCTCC AB 209298T =LMG 25540T =MCCC 1A01260T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 16-20 ◽  
Author(s):  
Rui Shao ◽  
Qiliang Lai ◽  
Xiupian Liu ◽  
Fengqin Sun ◽  
Yaping Du ◽  
...  

A taxonomic study was carried out on strain 22II14-10F7T, which was isolated from the deep-sea water of the Atlantic Ocean with oil-degrading enrichment. The bacterium was Gram-stain-negative, oxidase- and catalase-positive and rod-shaped. Growth was observed at salinities from 0.5 to 15 % and at temperatures from 4 to 37 °C; it was unable to hydrolyse Tween 40, 80 or gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II14-10F7T represented a member of the genus Zunongwangia , with highest sequence similarity of 97.3 % to Zunongwangia profunda SM-A87T, while the similarities to other species were all below 94.0 %. The DNA–DNA hybridization estimate of the similarity between strain 22II14-10F7T and Z. profunda SM-A87T was 27.20±2.43 % according to their genome sequences. The principal fatty acids were iso-C15 : 0, anteiso-C15 : 0 , iso-C15 : 1 G, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1ω7c/ω6c) and summed feature 9 (iso-C17 : 1ω9c or C16 : 0 10-methyl). The G+C content of the chromosomal DNA was 35.5 mol%. The major respiratory quinone was determined to be MK-6. Phosphatidylethanolamine (PE), two aminolipids (AL1 and AL2) and five unknown lipids (L1–L5) were present. The combined genotypic and phenotypic data show that strain 22II14-10F7T represents a novel species of the genus Zunongwangia , for which the name Zunongwangia atlantica sp. nov. is proposed, with the type strain 22II14-10F7T ( = CGMCC1.12470T = LMG 27421T = MCCC 1A06481T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1370-1374 ◽  
Author(s):  
Qiliang Lai ◽  
Liping Wang ◽  
Yuhui Liu ◽  
Yuanyuan Fu ◽  
Huanzi Zhong ◽  
...  

A taxonomic study was carried out on a novel bacterial strain, designated W11-5T, which was isolated from a pyrene-degrading consortium enriched from deep-sea sediment of the Pacific Ocean. The isolate was Gram-reaction-negative and oxidase- and catalase-positive. Growth was observed in 0.5–12 % (w/v) NaCl and at 10–42 °C. On the basis of 16S rRNA gene sequence analysis, strain W11-5T was shown to belong to the genus Alcanivorax with a close relation to A. dieselolei B-5T (93.9 % 16S rRNA sequence similarity), A. balearicus MACL04T (93.1 %), A. hongdengensis A-11-3T (93.1 %), A. borkumensis SK2T (93.0 %), A. venustensis ISO4T (93.0 %) and A. jadensis T9T (92.9 %). Similarities between the gyrB gene sequences of W11-5T and other species of the genus Alcanivorax were between 76.8 and 80.8 %. The principal fatty acids were C12 : 0 3-OH (8.0 %), C16 : 0 (29.1 %) and C18 : 1ω7c (27.4 %). The G+C content of the chromosomal DNA was 60.8 mol%. Based on its morphology, physiology and fatty acid composition as well as the results of 16S rRNA and gyrB gene sequence analyses, strain W11-5T ( = MCCC 1A00474T  = CCTCC AB 208236T  = LMG 25514T) represents a novel species of the genus Alcanivorax, for which the name Alcanivorax pacificus sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document