scholarly journals Chryseomicrobium imtechense gen. nov., sp. nov., a new member of the family Planococcaceae

2011 ◽  
Vol 61 (8) ◽  
pp. 1859-1864 ◽  
Author(s):  
Pankaj Kumar Arora ◽  
Archana Chauhan ◽  
Bhawana Pant ◽  
Suresh Korpole ◽  
Shanmugam Mayilraj ◽  
...  

A Gram-stain-positive, rod-shaped, yellow, non-motile, non-spore-forming, strictly aerobic bacterial strain, designated MW 10T, was isolated from seawater of the Bay of Bengal, India, and was subjected to a polyphasic taxonomic study. Analysis of the 16S rRNA gene sequence revealed that strain MW 10T showed highest similarity to the type strains of Psychrobacillus psychrodurans (96.15 %) and Psychrobacillus psychrotolerans (96.01 %) and showed less than 96 % similarity to members of the genera Paenisporosarcina, Planococcus, Sporosarcina and Planomicrobium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain MW 10T formed a clade separate from members of closely related genera. The morphological, physiological and chemotaxonomic characteristics of strain MW 10T differed from those of members of closely related genera. The major fatty acid in strain MW 10T was iso-C15 : 0 and the menaquinones were MK-7 (48.4 %), MK-8 (32.3 %), MK-7(H2) (13.7 %) and MK-6 (5.6 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unknown phospholipid, an unknown lipid and an unknown glycolipid. The cell-wall peptidoglycan type was l-Lys–d-Asp. The genomic DNA G+C content (53.4 mol%) of strain MW 10T was significantly different from those of members of closely related genera. On the basis of its morphological, physiological and chemotaxonomic characteristics as well as our phylogenetic analysis, we conclude that strain MW 10T is a member of a novel genus and species, for which the name Chryseomicrobium imtechense gen. nov., sp. nov., is proposed. The type strain of Chryseomicrobium imtechense is MW 10T ( = MTCC 10098T  = JCM 16573T).

2005 ◽  
Vol 55 (5) ◽  
pp. 1985-1989 ◽  
Author(s):  
Angel Valverde ◽  
Encarna Velázquez ◽  
Félix Fernández-Santos ◽  
Nieves Vizcaíno ◽  
Raúl Rivas ◽  
...  

Bacterial strain PETP02T was isolated from nodules of Trifolium pratense growing in a Spanish soil. Phylogenetic analysis of the 16S rRNA gene sequence showed that this strain represents a member of the genus Phyllobacterium. However, divergence found with the 16S rRNA gene sequence of the single recognized species of this genus, Phyllobacterium myrsinacearum, indicated that strain PETP02T belongs to a different species. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain represents a novel species of the genus Phyllobacterium, for which the name Phyllobacterium trifolii sp. nov. is proposed. The type strain is PETP02T (=LMG 22712T=CECT 7015T). This strain was strictly aerobic and used several carbohydrates as carbon source. It was not able to reduce nitrate. Aesculin hydrolysis was negative. It did not produce urease, arginine dihydrolase, gelatinase or β-galactosidase. The DNA G+C content was 56·4 mol%. The nodD gene of this strain showed a sequence closely related to those of strains able to nodulate Lupinus. Infectivity tests showed that this strain is able to produce nodules in both Trifolium repens and Lupinus albus.


2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


2007 ◽  
Vol 57 (2) ◽  
pp. 409-413 ◽  
Author(s):  
Yoon-Gon Kim ◽  
Dong Han Choi ◽  
Sangmin Hyun ◽  
Byung Cheol Cho

A halotolerant, facultatively alkaliphilic bacterium, designated CL-MP28T, was isolated from the surface of a sediment core sample collected at a depth of 2247 m in the Ulleung Basin of the East Sea, Korea. Phylogenetic analysis of the 16S rRNA gene sequence of strain CL-MP28T revealed an affiliation with the genus Oceanobacillus. The sequence similarities between the isolate and type strains of members of the genus Oceanobacillus were in the range 95.0–96.0 %, indicating that strain CL-MP28T represented a novel species within the genus. The strain was found to be Gram-positive, rod-shaped and motile by means of peritrichous flagella and was shown to produce ellipsoidal spores. The strain was strictly aerobic and able to grow with NaCl at concentrations in the range 0–14 % (w/v) at pH 7.5. The strain grew at temperatures of 15–42 °C and at pH 6.5–9.5. The major fatty acids were anteiso-C15 : 0 (64.9 %), anteiso-C17 : 0 (11.9 %) and iso-C16 : 0 (7.7 %). The major isoprenoid quinone was MK-7. The DNA G+C content was 40.2 mol%. According to the 16S rRNA gene sequence, DNA–DNA relatedness and physiological data and the fatty acid composition, CL-MP28T could be assigned to the genus Oceanobacillus, but is distinguishable from the recognized species of this genus. Strain CL-MP28T therefore represents a novel species within the genus Oceanobacillus, for which the name Oceanobacillus profundus sp. nov. is proposed. The type strain is CL-MP28T (=KCCM 42318T=DSM 18246T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2715-2718 ◽  
Author(s):  
Jung-Hye Choi ◽  
Min-Soo Kim ◽  
Seong Woon Roh ◽  
Jin-Woo Bae

A Gram-negative, aerobic, rod-shaped, non-motile strain, BL21T, was isolated from landfill soil in Pohang, Korea. Strain BL21T grew optimally at pH 7.0, 30 °C and 0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain BL21T belonged to the class Betaproteobacteria and was related to the genus Acidovorax. The 16S rRNA gene sequence of strain BL21T was less than 98.30 % similar to those of other species in the genus Acidovorax. DNA–DNA hybridization values with phylogenetically related species of the genus Acidovorax were only 11.7–28.4 %. The major fatty acid components included summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C16 : 0, C18 : 1 ω7c and C10 : 0 3-OH. The DNA G+C content was 60.9 mol%. For these reasons, strain BL21T (=KCTC 22399T =JCM 15909T) is proposed as a novel species in the genus Acidovorax, with the name Acidovorax soli sp. nov.


2006 ◽  
Vol 56 (8) ◽  
pp. 1869-1873 ◽  
Author(s):  
Dong H. Choi ◽  
Byung C. Cho

A rod-shaped marine bacterium, CL-TA03T, isolated from a biofilm in a coastal fish farm in Tongyeong, Korea, was characterized for physiological and biochemical features, fatty acid profile and phylogenetic position based on 16S rRNA gene sequences. Analysis of the 16S rRNA gene sequence revealed a clear affiliation with the family Rhodobacteraceae. Phylogenetic analysis of the 16S rRNA gene sequence showed that the closest relatives of CL-TA03T were Thalassobius gelatinovorus and Thalassobius mediterraneus (95.6 % similarity). The sequence similarities between CL-TA03T and other type species of the Roseobacter lineage ranged from 92.4 to 95.4 %. Strain CL-TA03T is motile and grows on marine agar as colourless or beige colonies. The strain is able to grow optimally in the range of 3–5 % sea salts. It grows within a temperature range of 15–35 °C and at pH 6–10. The fatty acids are dominated by 18 : 1ω7c (64.1 %) and 11-methyl 18 : 1ω7c (10.6 %). The DNA G+C content is 57.2 mol%. According to physiological data, fatty acid composition and phylogenetic analysis of the 16S rRNA gene sequence, CL-TA03T is considered to represent a new genus in the family Rhodobacteraceae and the name Shimia marina gen. nov., sp. nov. is proposed. The type strain of Shimia marina is CL-TA03T (=KCCM 42117T=JCM 13038T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1547-1552 ◽  
Author(s):  
Michael Fahrbach ◽  
Jan Kuever ◽  
Ruth Meinke ◽  
Peter Kämpfer ◽  
Juliane Hollender

A Gram-negative, motile, denitrifying bacterium (strain AcBE2-1T) was isolated from activated sludge of a municipal wastewater treatment plant using 17β-oestradiol (E2) as sole source of carbon and energy. Cells were curved rods, 0.4–0.8×0.8–2.0 μm in size, non-fermentative, non-spore-forming, oxidase-positive and catalase-negative. E2 was oxidized completely to carbon dioxide and water by reduction of nitrate to a mixture of dinitrogen monoxide and dinitrogen, with the intermediate accumulation of nitrite. Electron recoveries were between 90 and 100 %, taking assimilated E2 into account. With nitrate as the electron acceptor, the bacterium also grew on fatty acids (C2 to C6), isobutyrate, crotonate, dl-lactate, pyruvate, fumarate and succinate. Phylogenetic analysis of its 16S rRNA gene sequence revealed that strain AcBE2-1T represents a separate line of descent within the family Rhodocyclaceae (Betaproteobacteria). The closest relatives are the cholesterol-degrading, denitrifying bacteria Sterolibacterium denitrificans DSM 13999T and strain 72Chol (=DSM 12783), with <93.9 % sequence similarity. The G+C content of the DNA was 61.4 mol%. Detection of a quinone system with ubiquinone Q-8 as the predominant compound and a fatty acid profile that included high concentrations of C16 : 1 ω7c/iso-C15 : 0 2-OH and C16 : 0, in addition to C18 : 1 ω7c and small amounts of C8 : 0 3-OH, supported the results of the phylogenetic analysis. On the basis of 16S rRNA gene sequence data in combination with chemotaxonomic and physiological data, strain AcBE2-1T (=DSM 16959T=JCM 12830T) is placed in a new genus Denitratisoma gen. nov. as the type strain of the type species Denitratisoma oestradiolicum gen. nov., sp. nov.


2010 ◽  
Vol 60 (4) ◽  
pp. 938-943 ◽  
Author(s):  
Eun Ju Choi ◽  
Hak Cheol Kwon ◽  
Young Chang Sohn ◽  
Hyun Ok Yang

A novel marine bacterium, strain KMD 001T, was isolated from the starfish Asterias amurensis, which inhabits the East Sea of Korea. Strain KMD 001T was aerobic, light-yellow pigmented and Gram-stain-negative. Analyses of the 16S rRNA gene sequence revealed that strain KMD 001T represents a novel lineage within the class Gammaproteobacteria. Strain KMD 001T is closely related to the genera Endozoicomonas and Zooshikella, which belong to the family Hahellaceae and to the order Oceanospirillales. The 16S rRNA gene sequence of strain KMD 001T shows similarities of approximately 91.8–94.6 % with the above-mentioned genera. The DNA G+C content of KMD 001T is 47.6 mol%. It contains Q-9 as the major isoprenoid quinone. The predominant fatty acids were determined to be anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. Strain KMD 001T should be assigned to a novel bacterial genus within the class Gammaproteobacteria based on its phylogenetic, chemotaxonomic and phenotypic characteristics. The name Kistimonas asteriae gen. nov., sp. nov. is proposed. The type strain is KMD 001T (=KCCM 90076T =JCM 15607T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1017-1023 ◽  
Author(s):  
Hong Chen ◽  
Mareike Jogler ◽  
Brian J. Tindall ◽  
Hans-Peter Klenk ◽  
Manfred Rohde ◽  
...  

A novel type of freshwater bacterium was isolated from the prealpine mesotrophic Starnberger See (Bavaria, southern Germany). Cells of strain 382T were Gram-negative and rod-shaped, motile and creamy-white. The isolate was strictly aerobic, catalase- and oxidase-positive, and grew at pH values of 6–9 (optimum, pH 7) and temperatures of 10–37 °C (optimum, 28 °C). The genomic G+C content of strain 382T was 64.1 mol%. Based on 16S rRNA gene sequence analyses, strain 382T belongs to the family Sphingomonadaceae and clusters within the genus Sphingomonas . Sphingomonas histidinilytica UM 2T and Sphingomonas wittichii DSM 6014T were the closest relatives, as indicated by the highest 16S rRNA gene sequence similarities (97.1 % and 96.8 %, respectively). Sphingomonas paucimobilis DSM 1098T (the type species of the genus Sphingomonas ) exhibited 95.3 % sequence similarity. This affiliation of strain 382T to the genus Sphingomonas is confirmed by the presence of Q-10 as the major respiratory quinone, two sphingoglycolipids, C14 : 0 2-OH as the major 2-hydroxy fatty acid and sym-homospermidine as the major polyamine. The main cellular fatty acids of strain 382T were C18 : 1ω7c (39 %), C16 : 1ω7c (21 %), C16 : 0 (10 %) and C14 : 0 2-OH (10 %). Based on the phylogenetic distance from other species of the genus Sphingomonas and its unusually high C16 : 1ω7c content, strain 382T represents a novel species of the genus Sphingomonas , for which the name Sphingomonas starnbergensis is proposed. The type strain is 382T ( = DSM 25077T  = LMG 26763T).


Sign in / Sign up

Export Citation Format

Share Document