scholarly journals Nitratireductor pacificus sp. nov., isolated from a pyrene-degrading consortium

2011 ◽  
Vol 61 (6) ◽  
pp. 1386-1391 ◽  
Author(s):  
Qiliang Lai ◽  
Zhiwei Yu ◽  
Jianning Wang ◽  
Huanzi Zhong ◽  
Fengqin Sun ◽  
...  

Strain pht-3BT was isolated from a pyrene-degrading consortium of an enriched sediment from the Pacific Ocean, collected during the screening of polycyclic aromatic hydrocarbon-degrading bacteria. Cells were Gram-negative, short rods that were motile by means of flagella. Growth was observed at 0–7 % NaCl and 10–41 °C. The isolate was able to reduce nitrate to nitrite, but not to nitrogen. 16S rRNA gene sequence comparisons showed that strain pht-3BT was most closely related to Nitratireductor aquibiodomus NL21T (97.3 % 16S rRNA gene sequence similarity), N. indicus C115T (97.1 %), N. basaltis J3T (96.8 %) and N. kimnyeongensis KY 101T (96.7 %). DNA–DNA hybridization between strain pht-3BT and these reference strains revealed 55, 54, 28 and 42 % DNA–DNA relatedness, respectively. The dominant fatty acids were C19 : 0ω8c cyclo (22.6 %) and summed feature 8 (consisting of C18 : 1ω7c and/or C18 : 1ω6c; 60.4 %). The G+C content of the chromosomal DNA was 63 mol%. These characteristics were in good agreement with those of members of the genus Nitratireductor. According to cell morphology, physiology, fatty acid composition, 16S rRNA gene sequence analysis and DNA–DNA relatedness, the isolate belonged to the genus Nitratireductor but could be readily distinguished from recognized species of the genus. Therefore a novel species is proposed to accommodate strain pht-3BT, for which the name Nitratireductor pacificus sp. nov. is proposed. The type strain is pht-3BT ( = CCTCC AB 209302T = LMG 25541T = MCCC 1A01024T).

2006 ◽  
Vol 56 (4) ◽  
pp. 805-810 ◽  
Author(s):  
Ida Romano ◽  
Licia Lama ◽  
Barbara Nicolaus ◽  
Annarita Poli ◽  
Agata Gambacorta ◽  
...  

A halophilic, alkalitolerant bacterium, strain 20AGT, was isolated from an algal mat collected from a sulfurous spring located in Santa Maria Incaldana (Mondragone, Campania Region, southern Italy). The isolate is Gram-positive, ferments several carbohydrates and has motile, rod-shaped cells that do not sporulate. The isolate grows at pH 6·5–9·5 and in 5–20 % NaCl. On the basis of 16S rRNA gene sequence similarity, the strain was shown to belong to the genus Oceanobacillus; strain 20AGT showed 96·6 % 16S rRNA gene sequence similarity to the type strain of Oceanobacillus iheyensis, DSM 14371T, and 99·5 % similarity to Oceanobacillus oncorhynchi NCIMB 14022T. Levels of DNA–DNA relatedness between strain 20AGT and O. iheyensis DSM 14371T and O. oncorhynchi NCIMB 14022T were respectively 29·4 and 59·0 %. The G+C content of the DNA of strain 20AGT was 40·1 mol%. The predominant respiratory quinone was MK-7, phosphatidylglycerol and phosphatidylcholine were the predominant polar lipids and minor phospholipids were also detected. ai-C14 : 0, ai-C15 : 0 and i-C15 : 0 were the major fatty acids. Strain 20AGT accumulated osmolytes and produced exopolysaccharide. On the basis of phenotypic characteristics, phylogenetic data and DNA–DNA relatedness data, isolate 20AGT should be designated as the type strain of a subspecies of Oceanobacillus oncorhynchi, for which the name Oceanobacillus oncorhynchi subsp incaldanensis subsp. nov. is proposed. The type strain is 20AGT (=DSM 16557T=ATCC BAA-954T).


2006 ◽  
Vol 56 (12) ◽  
pp. 2853-2859 ◽  
Author(s):  
Pham Thi Ngoc Lan ◽  
Mitsuo Sakamoto ◽  
Shinji Sakata ◽  
Yoshimi Benno

Eight bacterial strains isolated from the caecum of chicken, BL2T, BL66, EG3, EG6, M27, BL78T, C35T and C43, were characterized by determining their phenotypic characteristics, cellular fatty acid profiles, menaquinone profiles and phylogenetic positions based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that these isolates belonged to the genus Bacteroides. One group of five strains (BL2T, BL66, EG3, EG6 and M27) was related most closely to Bacteroides coprocola JCM 12979T, with approximately 93 % 16S rRNA gene sequence similarity, and to Bacteroides plebeius JCM 12973T, with about 92 % similarity, and shared ⩾99.6 % similarity with each other. Strain BL78T exhibited 90.5 % similarity to B. plebeius JCM 12973T and 89.8 % similarity to B. coprocola JCM 12979T and differed from the above group of five strains at ⩾10 % sequence divergence. Strains C35T and C43 were related most closely to Bacteroides eggerthii JCM 12986T, with 95.1 % sequence similarity, to Bacteroides stercoris JCM 9496T, with 94.6 % similarity, and to Bacteroides uniformis JCM 5828T, with 94.4 % similarity, and shared 100 % similarity with each other. From results of phenotypic examination, cellular fatty acid composition analysis, menaquinone composition analysis and DNA G+C contents, the group of five strains as well as strain BL78T were shown to differ from the type strains of B. coprocola and B. plebeius. Strain BL78T differed from the others based on its menaquinone composition, which included MK-11 and MK-12. Strains C35T and C43 could also be differentiated from the type strains of B. eggerthii, B. stercoris and B. uniformis. The group of five strains, strain BL78T, B. coprocola JCM 12979T and B. plebeius JCM 12973T showed low levels of DNA–DNA relatedness (<35 %) with each other. High levels of DNA–DNA relatedness were obtained within the group of five strains (>75 %). Strains C35T and C43 exhibited a high level of DNA–DNA relatedness (>88 %) with each other, but low levels with B. eggerthii JCM 12986T (<40 %), B. stercoris JCM 9496T (<37 %) and B. uniformis JCM 5828T (<16 %). On the basis of these data, three novel Bacteroides species are proposed: Bacteroides barnesiae sp. nov. (type strain BL2T=JCM 13652T=DSM 18169T), Bacteroides salanitronis sp. nov. (type strain BL78T=JCM 13657T=DSM 18170T) and Bacteroides gallinarum sp. nov. (type strain C35T=JCM 13658T=DSM 18171T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2813-2817 ◽  
Author(s):  
Ahyoung Choi ◽  
Jang-Cheon Cho

Two Gram-negative, non-motile, non-pigmented and curved rod-shaped bacterial strains, designated IMCC4489T and IMCC4451, were isolated from a tidal flat sediment of the Yellow Sea. Strains IMCC4489T and IMCC4451 shared 99.9 % 16S rRNA gene sequence similarity and 78.5 % DNA–DNA relatedness, which suggested that they belonged to the same species. The isolates were most closely related to Reinekea blandensis MED297T (98.7–98.8 % 16S rRNA gene sequence similarity) and Reinekea marinisedimentorum DSM 15388T (95.3–95.4 %). DNA–DNA relatedness between the strains and R. blandensis CCUG 52066T was 31–34 %. Strains IMCC4489T and IMCC4451 could also be differentiated from the type strains of the two recognized Reinekea species by several phenotypic properties. The DNA G+C content was 51.3–51.5 mol% and the major isoprenoid quinone was Q-8. On the basis of the data obtained in this study, it is proposed that strains IMCC4489T and IMCC4451 represent a novel species, Reinekea aestuarii sp. nov. The type strain is IMCC4489T (=KCTC 22813T =KCCM 42938T =NBRC 106079T).


2005 ◽  
Vol 55 (6) ◽  
pp. 2303-2307 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

Two Gram-negative, motile, non-spore-forming, slightly halophilic bacteria (strains DSW10-10T and DSW10-19) were isolated from sea water and subjected to a polyphasic taxonomic study. They grew optimally at 30 °C and in the presence of 2–3 % (w/v) NaCl. Strains DSW10-10T and DSW10-19 were characterized chemotaxonomically as containing Q-8 as the predominant ubiquinone and C18 : 1 ω7c, C16 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. Their DNA G+C contents were 45·3–45·7 mol%. Strains DSW10-10T and DSW10-19 exhibited a 16S rRNA gene sequence similarity value of 100 % and possessed a mean DNA–DNA relatedness level of 85 %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains DSW10-10T and DSW10-19 fell within the radiation of the cluster encompassed by the genus Marinomonas. Strains DSW10-10T and DSW10-19 had 16S rRNA gene sequence similarity levels of 95·7–97·7 % with respect to the type strains of Marinomonas species with validly published names. Levels of DNA–DNA relatedness were low enough to indicate that the two strains constitute a distinct Marinomonas species. On the basis of phenotypic data and phylogenetic and genetic distinctiveness, strains DSW10-10T (=KCTC 12394T=DSM 17202T) and DSW10-19 were placed in the genus Marinomonas as members of a novel species, Marinomonas dokdonensis sp. nov.


2011 ◽  
Vol 61 (8) ◽  
pp. 1933-1937 ◽  
Author(s):  
Dong Wan Lee ◽  
Soo-Young Lee ◽  
Jung-Hoon Yoon ◽  
Soon Dong Lee

Two novel Gram-reaction-positive, rod-shaped actinobacterial strains, designated RP-B26T and RP-B30T, were isolated from rhizosphere soil of a cliff-associated plant (Peucedanum japonicum Thunb.) which was collected from Mara Island, Republic of Korea. The colonies of the isolates were circular, smooth, convex and moderately yellow–light-yellow in colour. 16S rRNA gene sequence analysis revealed that the isolates belonged to the family Nocardioidaceae and formed two distinct sublineages within the radiation of the genus Nocardioides. 16S rRNA gene sequence similarity between the isolates was 98.2 %. The closest phylogenetic neighbours of strain RP-B26T were Nocardioides humi DCY24T and Nocardioides kongjuensis A2-4T with 97.4 and 97.0 % 16S rRNA gene sequence similarity, respectively, whereas 16S rRNA gene sequence similarities between strain RP-B30T and N. humi DCY24T and N. kongjuensis A2-4T were 96.5 and 96.0 %, respectively. Both of the isolates contained ll-diaminopimelic acid as the diagnostic diamino acid in the cell walls. The predominant menaquinone was MK-8(H4). The polar lipids were phosphatidylinositol and phosphatidylglycerol. The fatty acid profiles of the isolates were characterized by the presence of saturated, unsaturated, 10-methyl and hydroxyl fatty acids, with small amounts of branched fatty acids. The DNA G+C contents of strains RP-B26T and RP-B30T were 73.0 and 71.7 mol%, respectively. Levels of DNA–DNA relatedness between the isolates were 44.9±1.5 % (thermal renaturation method) and 43.2 % (photobiotin-labelled method); the isolates showed low DNA–DNA relatedness values (<11 %) to the most closely related strain, N. humi KCTC 19265T. On the basis of the phenotypic, genotypic and DNA–DNA hybridization data presented here, the isolates are considered to represent two novel species of the genus Nocardioides, for which the names Nocardioides ultimimeridianus sp. nov. (type strain RP-B26T  = KCTC 19368T  = DSM 19768T) and Nocardioides maradonensis sp. nov. (type strain RP-B30T  = KCTC 19384T  = DSM 19769T) are proposed.


2004 ◽  
Vol 54 (6) ◽  
pp. 1975-1980 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Hyang Burm Lee ◽  
Soo-Hwan Yeo ◽  
Jae-Eul Choi

Two Gram-positive bacterial strains, CM2104T and CM2110, isolated from the inner part of abnormally spoiled oriental melon (Cucumis melo) in Korea, were subjected to a polyphasic taxonomic study. The cell-wall peptidoglycan of strains CM2104T and CM2110 contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinone was MK-8(H4). The major fatty acids detected in the two strains were iso-C16 : 0, C17 : 1 ω8c and C18 : 1 ω9c or C17 : 0. The DNA G+C content of the two strains was 73 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strains formed a coherent cluster with a clade comprising two Janibacter species, Janibacter limosus and Janibacter terrae. Strains CM2104T and CM2110 exhibited a 16S rRNA gene sequence similarity value of 99·7 % and a mean DNA–DNA relatedness level of 89 %. Strains CM2104T and CM2110 showed 16S rRNA gene sequence similarity levels of 97·8–98·4 % to the type strains of J. limosus and J. terrae. DNA–DNA relatedness between strains CM2104T and CM2110 and the type strains of these two Janibacter species was 7–11 %. On the basis of the phenotypic and phylogenetic data and genomic distinctiveness, strains CM2104T and CM2110 should be placed within the genus Janibacter as members of a novel species, for which the name Janibacter melonis sp. nov. is proposed. The type strain is CM2104T (=KCTC 9987T=DSM 16063T=JCM 12321T).


Author(s):  
Shadi Khodamoradi ◽  
Richard L. Hahnke ◽  
Yvonne Mast ◽  
Peter Schumann ◽  
Peter Kämpfer ◽  
...  

AbstractStrain M2T was isolated from the beach of Cuxhaven, Wadden Sea, Germany, in course of a program to attain new producers of bioactive natural products. Strain M2T produces litoralimycin and sulfomycin-type thiopeptides. Bioinformatic analysis revealed a potential biosynthetic gene cluster encoding for the M2T thiopeptides. The strain is Gram-stain-positive, rod shaped, non-motile, spore forming, showing a yellow colony color and forms extensively branched substrate mycelium and aerial hyphae. Inferred from the 16S rRNA gene phylogeny strain M2T affiliates with the genus Streptomonospora. It shows 96.6% 16S rRNA gene sequence similarity to the type species Streptomonospora salina DSM 44593 T and forms a distinct branch with Streptomonospora sediminis DSM 45723 T with 97.0% 16S rRNA gene sequence similarity. Genome-based phylogenetic analysis revealed that M2T is closely related to Streptomonospora alba YIM 90003 T with a digital DNA-DNA hybridisation (dDDH) value of 26.6%. The predominant menaquinones of M2T are MK-10(H6), MK-10(H8), and MK-11(H6) (> 10%). Major cellular fatty acids are iso-C16:0, anteiso C17:0 and C18:0 10-methyl. The polar lipid profile consisted of diphosphatidylglycerol phosphatidyl glycerol, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, three glycolipids, two unknown phospholipids, and two unknown lipids. The genome size of type strain M2T is 5,878,427 bp with 72.1 mol % G + C content. Based on the results obtained from phylogenetic and chemotaxonomic studies, strain M2T (= DSM 106425 T = NCCB 100650 T) is considered to represent a novel species within the genus Streptomonospora for which the name Streptomonospora litoralis sp. nov. is proposed.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2006 ◽  
Vol 56 (11) ◽  
pp. 2579-2582 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Li-Hua Xu ◽  
Cheng-Lin Jiang ◽  
...  

Strain B538T is a Gram-positive, motile, rod-shaped bacterium, which was isolated from Xinjiang province in China. This organism grew optimally at 30–35 °C and pH 8.0–8.5. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B538T belonged to the genus Paenibacillus and chemotaxonomic data (DNA G+C content, 47.0 mol%; major isoprenoid quinone, MK-7; cell wall type, A1γ meso-diaminopimelic acid; major fatty acids, anteiso-C15 : 0 and C16 : 0) supported affiliation of the isolate with the genus Paenibacillus. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Paenibacillus glycanilyticus DS-1T, with 16S rRNA gene sequence similarity of 98.1 %; sequence similarities to other members of the genus Paenibacillus used in the phylogenetic tree were less than 96.5 %. The DNA–DNA relatedness between strain B538T and P. glycanilyticus DS-1T was about 8.0 %. On the basis of physiological and molecular properties, strain B538T (=KCTC 3952T=DSM 16970T) is proposed as the type strain of a novel species within the genus Paenibacillus, for which the name Paenibacillus xinjiangensis sp. nov. is proposed.


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document