scholarly journals Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota

2012 ◽  
Vol 62 (1) ◽  
pp. 138-143 ◽  
Author(s):  
Christophe Chassard, ◽  
Eve Delmas, ◽  
Céline Robert, ◽  
Paul A. Lawson ◽  
Annick Bernalier-Donadille

A strictly anaerobic, cellulolytic strain, designated 18P13T, was isolated from a human faecal sample. Cells were Gram-positive non-motile cocci. Strain 18P13T was able to degrade microcrystalline cellulose but the utilization of soluble sugars was restricted to cellobiose. Acetate and succinate were the major end products of cellulose and cellobiose fermentation. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Ruminococcus of the family Ruminococcaceae. The closest phylogenetic relative was the ruminal cellulolytic strain Ruminococcus flavefaciens ATCC 19208T (<95 % 16S rRNA gene sequence similarity). The DNA G+C content of strain 18P13T was 53.05±0.7 mol%. On the basis of phylogenetic analysis, and morphological and physiological data, strain 18P13T can be differentiated from other members of the genus Ruminococcus with validly published names. The name Ruminococcus champanellensis sp. nov. is proposed, with 18P13T ( = DSM 18848T = JCM 17042T) as the type strain.

2004 ◽  
Vol 54 (5) ◽  
pp. 1469-1476 ◽  
Author(s):  
Muriel Derrien ◽  
Elaine E. Vaughan ◽  
Caroline M. Plugge ◽  
Willem M. de Vos

The diversity of mucin-degrading bacteria in the human intestine was investigated by combining culture and 16S rRNA-dependent approaches. A dominant bacterium, strain MucT, was isolated by dilution to extinction of faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. A pure culture was obtained using the anaerobic soft agar technique. Strain MucT was a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium that could grow singly and in pairs. When grown on mucin medium, cells produced a capsule and were found to aggregate. Strain MucT could grow on a limited number of sugars, including N-acetylglucosamine, N-acetylgalactosamine and glucose, but only when a protein source was provided and with a lower growth rate and final density than on mucin. The G+C content of DNA from strain MucT was 47·6 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the division Verrucomicrobia. The closest described relative of strain MucT was Verrucomicrobium spinosum (92 % sequence similarity). Remarkably, the 16S rRNA gene sequence of strain MucT showed 99 % similarity to three uncultured colonic bacteria. According to the data obtained in this work, strain MucT represents a novel bacterium belonging to a new genus in subdivision 1 of the Verrucomicrobia; the name Akkermansia muciniphila gen. nov., sp. nov. is proposed; the type strain is MucT (=ATCC BAA-835T=CIP 107961T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1621-1629 ◽  
Author(s):  
Yuji Sekiguchi ◽  
Hiroyuki Imachi ◽  
Ambar Susilorukmi ◽  
Mizuho Muramatsu ◽  
Akiyoshi Ohashi ◽  
...  

Three anaerobic, moderately thermophilic, syntrophic primary alcohol- and lactate-degrading microbes, designated strains JLT, JE and OL, were isolated from sludges of thermophilic (55 °C) digesters that decomposed either municipal solid wastes or sewage sludge. The strains were strictly anaerobic organisms. All three strains grew at 25–60 °C and pH 5.5–8.5 and optimum growth was observed at 45–50 °C and pH 6.0–7.0. The three organisms grew chemo-organotrophically on a number of carbohydrates in the presence of yeast extract. In co-culture with the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus, all strains could utilize ethanol, glycerol and lactate syntrophically for growth, although these compounds were not metabolized in pure culture without additional external electron acceptors. All strains could reduce thiosulphate. Quinones were not detected. The DNA G+C contents of strains JLT, JE and OL were 38.0, 37.3 and 37.7 mol%, respectively. Major cellular fatty acids of the strains were iso-C15 : 0, C16 : 0 and unsaturated species of C15 : 1. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belong to a deeply branched lineage of the phylum Firmicutes; the most closely related species was Thermovenabulum ferriorganovorum (16S rRNA gene sequence similarity of 88 %). The three strains were phylogenetically very closely related to each other (99–100 % 16S rRNA gene sequence similarity) and were physiologically and chemotaxonomically similar. These genetic and phenotypic properties suggest that the strains should be classified as representatives of a novel species and genus; the name Tepidanaerobacter syntrophicus gen. nov., sp. nov. is proposed. The type strain of Tepidanaerobacter syntrophicus is strain JLT (=JCM 12098T=NBRC 100060T=DSM 15584T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1547-1552 ◽  
Author(s):  
Michael Fahrbach ◽  
Jan Kuever ◽  
Ruth Meinke ◽  
Peter Kämpfer ◽  
Juliane Hollender

A Gram-negative, motile, denitrifying bacterium (strain AcBE2-1T) was isolated from activated sludge of a municipal wastewater treatment plant using 17β-oestradiol (E2) as sole source of carbon and energy. Cells were curved rods, 0.4–0.8×0.8–2.0 μm in size, non-fermentative, non-spore-forming, oxidase-positive and catalase-negative. E2 was oxidized completely to carbon dioxide and water by reduction of nitrate to a mixture of dinitrogen monoxide and dinitrogen, with the intermediate accumulation of nitrite. Electron recoveries were between 90 and 100 %, taking assimilated E2 into account. With nitrate as the electron acceptor, the bacterium also grew on fatty acids (C2 to C6), isobutyrate, crotonate, dl-lactate, pyruvate, fumarate and succinate. Phylogenetic analysis of its 16S rRNA gene sequence revealed that strain AcBE2-1T represents a separate line of descent within the family Rhodocyclaceae (Betaproteobacteria). The closest relatives are the cholesterol-degrading, denitrifying bacteria Sterolibacterium denitrificans DSM 13999T and strain 72Chol (=DSM 12783), with <93.9 % sequence similarity. The G+C content of the DNA was 61.4 mol%. Detection of a quinone system with ubiquinone Q-8 as the predominant compound and a fatty acid profile that included high concentrations of C16 : 1 ω7c/iso-C15 : 0 2-OH and C16 : 0, in addition to C18 : 1 ω7c and small amounts of C8 : 0 3-OH, supported the results of the phylogenetic analysis. On the basis of 16S rRNA gene sequence data in combination with chemotaxonomic and physiological data, strain AcBE2-1T (=DSM 16959T=JCM 12830T) is placed in a new genus Denitratisoma gen. nov. as the type strain of the type species Denitratisoma oestradiolicum gen. nov., sp. nov.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


2011 ◽  
Vol 61 (1) ◽  
pp. 201-204 ◽  
Author(s):  
Hae-Min Jung ◽  
Jung-Sook Lee ◽  
Heon-Meen Bae ◽  
Tae-Hoo Yi ◽  
Se-Young Kim ◽  
...  

A Gram-reaction-negative, chemo-organotrophic, non-motile, non-spore-forming, rod-shaped bacterium (strain Gsoil 080T) was isolated from soil collected in a ginseng field in Pocheon Province, South Korea, and was investigated by using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 080T was related most closely to Inquilinus limosus strains AU0476T and AU1979 (98.9 % similarity to both). Strain Gsoil 080T shared ≤91.3 % 16S rRNA gene sequence similarity with the type strains of other recognized species examined. The genus Inquilinus belongs to the family Rhodospirillaceae in the order Rhodospirillales, class Alphaproteobacteria. The predominant ubiquinone was Q-10 and the major fatty acids were summed feature 7 (C18 : 1 ω9c/ω12t/ω7c) and C19 : 0 cyclo ω8c. The G+C content of the genomic DNA of strain Gsoil 080T was 69.9 mol%. The level of DNA–DNA relatedness between strain Gsoil 080T and I. limosus LMG 20952T was 12 %. The results of genotypic analyses in combination with chemotaxonomic and physiological data demonstrated that strain Gsoil 080T represents a novel species of the genus Inquilinus, for which the name Inquilinus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 080T (=KCTC 12574T =LMG 23638T).


2011 ◽  
Vol 61 (3) ◽  
pp. 674-679 ◽  
Author(s):  
Guang-Li Wang ◽  
Li Wang ◽  
Hong-Hong Chen ◽  
Bin Shen ◽  
Shun-Peng Li ◽  
...  

An aerobic, Gram-negative bacterial strain, designated CTN-1T, capable of degrading chlorothalonil was isolated from a long-term chlorothalonil-contaminated soil in China, and was subjected to a polyphasic taxonomic investigation. Strain CTN-1T grew at 15–37 °C (optimum 28–30 °C) and at pH 6.0–9.0 (optimum pH 7.0–7.5). The G+C content of the total DNA was 67.1 mol%. Based on 16S rRNA gene sequence analysis, strain CTN-1T was related most closely to Lysobacter daejeonensis DSM 17634T (97.1 % similarity), L. soli DCY21T (95.7 %), L. concretionis Ko07T (95.5 %), L. gummosus LMG 8763T (95.3 %) and L. niastensis DSM 18481T (95.2 %). The novel strain showed less than 95.0 % 16S rRNA gene sequence similarity to the type strains of other Lysobacter species. The major cellular fatty acids of strain CNT-1T were iso-C16 : 0 (23.0 %), iso-C15 : 0 (21.4 %) and iso-C17 : 1 ω9c (15.3 %). The major isoprenoid quinone was Q-8 (99 %), and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. These chemotaxonomic data supported the affiliation of strain CTN-1T to the genus Lysobacter. Levels of DNA–DNA relatedness between strain CTN-1T and L. daejeonensis DSM 17634T were 34.6–36.1 %. Phylogenetic analysis based on 16S rRNA gene sequences, DNA–DNA hybridization data and biochemical and physiological characteristics strongly supported the genotypic and phenotypic differentiation of strain CTN-1T from recognized species of the genus Lysobacter. Strain CTN-1T is therefore considered to represent a novel species of the genus Lysobacter, for which the name Lysobacter ruishenii sp. nov. is proposed. The type strain is CTN-1T (=DSM 22393T =CGMCC 1.10136T).


2006 ◽  
Vol 56 (10) ◽  
pp. 2469-2472 ◽  
Author(s):  
Peter Kämpfer ◽  
Chiu-Chung Young ◽  
A. B. Arun ◽  
Fo-Ting Shen ◽  
Udo Jäckel ◽  
...  

A Gram-negative, short rod-shaped micro-organism (CC-BB4T) was isolated on nutrient agar from soil from Sinshe in Taichung County, Taiwan. Analysis of the 16S rRNA gene sequence demonstrated that this isolate was novel, as it showed <92 % similarity to the sequences of species of the genera Labrys, Beijerinckia and Methylocystis. The micro-organism did not utilize methylamine or methanol as a substrate, but was able to use several organic acids. The fatty acid profile was different from those reported for the genera Labrys, Beijerinckia, Methylocystis, Angulomicrobium, Methylorhabdus and Methyloarcula. On the basis of the 16S rRNA gene sequence analysis, in combination with chemotaxonomic and physiological data, strain CC-BB4T represents a novel genus, for which the name Pseudolabrys gen. nov. is proposed. The type species is Pseudolabrys taiwanensis sp. nov., and the type strain of P. taiwanensis is CC-BB4T (=CCUG 51779T=CIP 108932T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3522-3526 ◽  
Author(s):  
Yu Deng ◽  
Xiang Guo ◽  
Yanwei Wang ◽  
Mingxiong He ◽  
Kedong Ma ◽  
...  

A Gram-staining-positive, spore-forming, strictly anaerobic bacterium, designated strain LAM0A37T, was isolated from enrichment samples collected from a petroleum reservoir in Shengli oilfield. Cells of strain LAM0A37T were rod-shaped and motile by peritrichous flagella. The optimal temperature and pH for growth were 40 °C and 7.0–7.5, respectively. The strain did not require NaCl for growth but tolerated up to 3 % (w/v) NaCl. Strain LAM0A37T was able to utilize glucose, fructose, maltose, xylose, sorbitol, cellobiose, melibiose and melezitose as sole carbon sources. Sulfite was used as an electron acceptor. The main products of glucose fermentation were acetate and CO2. The predominant fatty acid was C16 : 0 (23.6 %). The main polar lipid profile comprised of five glycolipids, six phospholipids and two lipids. No menaquinone was detected. The genomic DNA G+C content was 27.1 ± 0.2 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate was a member of the genus Terrisporobacter, and was most closely related to Terrisporobacter glycolicus JCM 1401T and Terrisporobacter mayombei DSM 6539T with 98.3 % 16S rRNA gene sequence similarity to both. DNA–DNA hybridization values between strain LAM0A37T and type strains of Terrisporobacter glycolicus and Terrisporobacter mayombei were 45.6 ± 0.3 % and 38.3 ± 0.4 %, respectively. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0A37T is suggested to represent a novel species of the genus Terrisporobacter, for which the name Terrisporobacter petrolearius sp. nov. is proposed. The type strain is LAM0A37T ( = ACCC 00740T = JCM 19845T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1714-1718 ◽  
Author(s):  
Xiang Zeng ◽  
Zhao Zhang ◽  
Xi Li ◽  
Mohamed Jebbar ◽  
Karine Alain ◽  
...  

A thermophilic, anaerobic, iron-reducing bacterium (strain DY22619T) was isolated from a sulfide sample collected from an East Pacific Ocean hydrothermal field at a depth of 2901 m. Cells were Gram-stain-negative, motile rods (2–10 µm in length, 0.5 µm in width) with multiple peritrichous flagella. The strain grew at 40–70 °C inclusive (optimum 60 °C), at pH 4.5–8.5 inclusive (optimum pH 7.0) and with sea salts concentrations of 1–10 % (w/v) (optimum 3 % sea salts) and NaCl concentrations of 1.5–5.0 % (w/v) (optimum 2.5 % NaCl). Under optimal growth conditions, the generation time was around 55 min. The isolate was an obligate chemoorganoheterotroph, utilizing complex organic compounds, amino acids, carbohydrates and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamate, methionine, threonine, fructose, mannose, galactose, glucose, palatinose, rhamnose, turanose, gentiobiose, xylose, sorbose, pyruvate, tartaric acid, α-ketobutyric acid, α-ketovaleric acid, galacturonic acid and glucosaminic acid. Strain DY22619T was strictly anaerobic and facultatively dependent on various forms of Fe(III) as an electron acceptor: insoluble forms and soluble forms. It did not reduce sulfite, sulfate, thiosulfate or nitrate. The genomic DNA G+C content was 29.0 mol%. Phylogenetic 16S rRNA gene sequence analyses revealed that the closest relative of strain DY22619T was Caloranaerobacter azorensis MV1087T, sharing 97.41 % 16S rRNA gene sequence similarity. On the basis of physiological distinctness and phylogenetic distance, the isolate is considered to represent a novel species of the genus Caloranaerobacter , for which the name Caloranaerobacter http://dx.doi.org/10.1601/nm.4081 ferrireducens sp. nov. is proposed. The type strain is DY22619T ( = JCM 19467T = DSM 27799T = MCCC1A06455T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1718-1723 ◽  
Author(s):  
Yan-Ling Qiu ◽  
Xiao-zhu Kuang ◽  
Xiao-shuang Shi ◽  
Xian-zheng Yuan ◽  
Rong-bo Guo

A strictly anaerobic, mesophilic, carbohydrate-fermenting bacterium, designated NM-5T, was isolated from a rice paddy field. Cells of strain NM-5T were Gram-stain-negative, non-motile, non-spore-forming, short rods (0.5–0.7 µm×0.6–1.2 µm). The strain grew optimally at 37 °C (growth range 20–40 °C) and pH 7.0 (pH 5.5–8.0). The strain could grow fermentatively on arabinose, xylose, fructose, galactose, glucose, ribose, mannose, cellobiose, lactose, maltose and sucrose. The main end-products of glucose fermentation were acetate and propionate. Organic acids, alcohols and amino acids were not utilized for growth. Yeast extract was not required but stimulated the growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, and Fe (III) nitrilotriacetate were not used as terminal electron acceptors. The DNA G+C content was 46.3 mol%. The major cellular fatty acids were iso-C14 : 0, C18 : 0 and C16 : 0. 16S rRNA gene sequence analysis revealed that strain NM-5T belongs to the class ‘S partobacteria’, subdivision 2 of the bacterial phylum Verrucomicrobia . Phylogenetically, the closest species was ‘Chthoniobacter flavus’ (89.6 % similarity in 16S rRNA gene sequence). A novel genus and species, Terrimicrobium sacchariphilum gen. nov., sp. nov., is proposed. The type strain of the type species is NM-5T ( = JCM 17479T = CGMCC 1.5168T).


Sign in / Sign up

Export Citation Format

Share Document