scholarly journals Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents

2004 ◽  
Vol 54 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Costantino Vetriani ◽  
Mark D. Speck ◽  
Susan V. Ellor ◽  
Richard A. Lutz ◽  
Valentin Starovoytov

A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9° 50′ N. Cells of the organism were Gram-negative, motile rods that were about 1·0 μm in length and 0·6 μm in width. Growth occurred between 60 and 80 °C (optimum at 75 °C), 0·5 and 4·5 % (w/v) NaCl (optimum at 2 %) and pH 5 and 7 (optimum at 5·5). Generation time under optimal conditions was 1·57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H2 and CO2, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54·6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain Bacteria and formed a deep branch within the phylum Aquificae, with Thermovibrio ruber as its closest relative (94·4 % sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus Thermovibrio. The type strain is Thermovibrio ammonificans HB-1T (=DSM 15698T=JCM 12110T).

2010 ◽  
Vol 60 (5) ◽  
pp. 1182-1186 ◽  
Author(s):  
Ileana Pérez-Rodríguez ◽  
Jessica Ricci ◽  
James W. Voordeckers ◽  
Valentin Starovoytov ◽  
Costantino Vetriani

A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1T, was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at  ° 50′ N 10 ° 17′ W. The cells were Gram-negative-staining rods, approximately 1–1.5 μm long and 0.3–0.5 μm wide. Strain MB-1T grew at 25–65 °C (optimum 55 °C), with 10–35 g NaCl l−1 (optimum 20 g l−1) and at pH 4.5–8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N2/CO2 gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmHT, Nautilia abyssi PH1209T and Nautilia lithotrophica 525T (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1T (=DSM 22087T =JCM 15746T).


2007 ◽  
Vol 57 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Jaewoo Yoon ◽  
Mina Yasumoto-Hirose ◽  
Atsuko Katsuta ◽  
Hiroshi Sekiguchi ◽  
Satoru Matsuda ◽  
...  

An obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium, designated strain 04OKA010-24T, was isolated from seawater surrounding the hard coral Galaxea fascicularis L., collected at Majanohama, Akajima, Japan, and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain represented a member of the phylum ‘Verrucomicrobia’ and shared 84–95 % sequence similarity with cultivated strains of ‘Verrucomicrobia’ subdivision 4. Amino acid analysis of the cell-wall hydrolysate indicated the absence of muramic acid and diaminopimelic acid, which suggested that the strain did not contain peptidoglycan in the cell wall. The G+C content of the DNA was 53.9 mol%. MK-7 was the major menaquinone and C14 : 0, C18 : 1 ω9c and C18 : 0 were the major fatty acids. On the basis of these data, it was concluded that strain 04OKA010-24T represents a novel species in a new genus in subdivision 4 of the phylum ‘Verrucomicrobia’, for which the name Coraliomargarita akajimensis gen. nov., sp. nov. is proposed. The type strain of Coraliomargarita akajimensis is 04OKA010-24T (=MBIC06463T=IAM 15411T=KCTC 12865T).


2007 ◽  
Vol 57 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Sylvaine Crapart ◽  
Marie-Laure Fardeau ◽  
Jean-Luc Cayol ◽  
Pierre Thomas ◽  
Christian Sery ◽  
...  

A facultatively anaerobic, halotolerant, moderately thermophilic and non-sporulating bacterium, designated strain 10CT, was isolated from deep-sea hydrothermal vent samples collected on the 13° N East Pacific Rise at a depth of approximately 2600 m. Cells of strain 10CT were Gram-positive, motile rods, and grew optimally at 45 °C (range 12–49 °C), pH 7.0 (range pH 5.5–9.5) and 0–2 % NaCl (range 0–11 %). (+)-l-Lactate was the main organic acid detected from carbohydrate fermentation with traces of formate, acetate and ethanol. Strain 10CT was catalase-positive, oxidase-negative and reduced nitrate to nitrite under anaerobic conditions. The DNA G+C content was 50.4 mol%. Its closest phylogenetic relatives were Exiguobacterium aestuarii TF-16T and Exiguobacterium marinum TF-80T (16S rRNA gene sequence similarity >99 %). However, strain 10CT differed genotypically from these two Exiguobacterium species as indicated by DNA–DNA relatedness data. Therefore, on the basis of phenotypic, genotypic and phylogenetic characteristics, strain 10CT is considered to represent a novel species of the genus Exiguobacterium, for which the name Exiguobacterium profundum sp. nov. is proposed. The type strain is 10CT (=CCUG 50949T=DSM 17289T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2167-2172 ◽  
Author(s):  
Qi-Yong Tang ◽  
Na Yang ◽  
Jian Wang ◽  
Yu-Qing Xie ◽  
Biao Ren ◽  
...  

A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated XJ259T, was isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region, China. The isolate grew optimally at 20–30 °C and pH 7.3–7.8. Comparative analysis of the 16S rRNA gene sequence showed that isolate XJ259T belonged phylogenetically to the genus Paenibacillus, and was most closely related to Paenibacillus xinjiangensis B538T (with 96.6 % sequence similarity), Paenibacillus glycanilyticus DS-1T (96.3 %) and Paenibacillus castaneae Ch-32T (96.1 %), sharing less than 96.0 % sequence similarity with all other members of the genus Paenibacillus. Chemotaxonomic analysis revealing menaquinone-7 (MK-7) as the major isoprenoid quinone, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phosphoglycolipids as the major cellular polar lipids, a DNA G+C content of 47.0 mol%, and anteiso-C15 : 0 and C16 : 0 as the major fatty acids supported affiliation of the new isolate to the genus Paenibacillus. Based on these data, isolate XJ259T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus algorifonticola sp. nov. is proposed. The type strain is XJ259T ( = CGMCC 1.10223T  = JCM 16598T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1715-1719 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Sun-Chang Kim ◽  
Chang-Hao Cui ◽  
Chengri Yin ◽  
...  

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105T, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order Bacillales, showing the highest level of sequence similarity with respect to Tumebacillus permanentifrigoris Eur1 9.5T (94.6 %). The phylogenetic distances from other described species with validly published names within the order Bacillales were greater than 9.0 %. Strain Gsoil 1105T had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 1105T ( = KCTC 13942T  = DSM 18389T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1305-1310 ◽  
Author(s):  
Jan Hendrik Wübbeler ◽  
Tina Lütke-Eversloh ◽  
Stefanie Van Trappen ◽  
Peter Vandamme ◽  
Alexander Steinbüchel

In this study, a novel betaproteobacterium, strain DPN7T, was isolated under mesophilic conditions from compost because of its capacity to utilize the organic disulfide 3,3′-dithiodipropionic acid. Analysis of the 16S rRNA gene sequence of strain DPN7T revealed 98.5 % similarity to that of Tetrathiobacter kashmirensis LMG 22695T. Values for sequence similarity to members of the genera Alcaligenes, Castellaniella and Taylorella, the nearest neighbours of the genus Tetrathiobacter, were about 95 % or less. The DNA G+C content of strain DPN7T was 55.1 mol%. The level of DNA–DNA hybridization between strain DPN7T and T. kashmirensis LMG 22695T was 41 %, whereas it was much lower between strain DPN7T and Alcaligenes faecalis LMG 1229T (7 %) or Castellaniella defragrans LMG 18538T (5 %). This genotypic divergence was supported by differences in biochemical and chemotaxonomic characteristics. For this reason, and because of the differences in the protein and fatty acid profiles, strain DPN7T should be classified within a novel species of Tetrathiobacter, for which the name Tetrathiobacter mimigardefordensis sp. nov. is proposed. The type strain is strain DPN7T (=DSM 17166T=LMG 22922T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2345-2350 ◽  
Author(s):  
Yusuke Kondo ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

A Gram-stain-negative, non-motile, pleomorphic rod-shaped, orange–red-pigmented, facultatively aerobic and haloalkaliphilic archaeon, strain MK13-1T, was isolated from commercial rock salt imported from Pakistan. The NaCl, pH and temperature ranges for growth of strain MK13-1T were 3.0–5.2 M NaCl, pH 8.0–11.0 and 15–50 °C, respectively. Optimal growth occurred at 3.2–3.4 M NaCl, pH 9.0–9.5 and 45 °C. Addition of Mg2+ was not required for growth. The major polar lipids of the isolate were C20C20 and C20C25 archaeol derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Glycolipids were not detected. The DNA G+C content was 64.1 mol%. The 16S rRNA gene sequence of strain MK13-1T was most closely related to those of the species of the genus Halorubrum, Halorubrum luteum CECT 7303T (95.9 % similarity), Halorubrum alkaliphilum JCM 12358T (95.3 %), Halorubrum kocurii JCM 14978T (95.3 %) and Halorubrum lipolyticum JCM 13559T (95.3 %). The rpoB′ gene sequence of strain MK13-1T had < 90 % sequence similarity to those of other members of the genus Halorubrum. Based on the phylogenetic analysis and phenotypic characterization, strain MK13-1T may represent a novel species of the genus Halorubrum, for which the name Halorubrum gandharaense sp. nov. is proposed, with the type strain MK13-1T ( = JCM 17823T = CECT 7963T).


2005 ◽  
Vol 55 (5) ◽  
pp. 2113-2117 ◽  
Author(s):  
P. Chaturvedi ◽  
G. S. N. Reddy ◽  
S. Shivaji

Strain HHS 11T was isolated from a water sample collected from the snout of Hamta glacier located in the Himalayan mountain ranges of India. Phenotypic, chemotaxonomic and phylogenetic analyses established the affiliation of the isolate to the genus Dyadobacter. HHS 11T possessed 96 and 95 % 16S rRNA gene sequence similarity with respect to Dyadobacter crusticola and Dyadobacter fermentans, respectively. Furthermore, strain HHS 11T differs from D. crusticola and D. fermentans in a number of phenotypic characteristics. These data suggest that strain HHS 11T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter hamtensis sp. nov. is proposed. The type strain is HHS 11T (=JCM 12919T=MTCC 7023T).


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chandandeep Kaur ◽  
Anil Kumar Pinnaka ◽  
Nitin Kumar Singh ◽  
Monu Bala ◽  
Shanmugam Mayilraj

A Gram-positive, yellowish bacterium strain AK-1Twas isolated from soil sample collected from peanut (Arachis hypogaea) crop field and studied by using a polyphasic approach. The organism had morphological and chemotaxonomic properties consistent with its classification in the genusAgromyces. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain AK-1Twas closely related toAgromyces aurantiacus(98.6%) followed byAgromyces soli(98.3%),Agromyces tropicus(97.6%),Agromyces ulmi(97.3%),Agromyces flavus(97.2%), andAgromyces italicus(97.0%), whereas the sequence similarity values with respect to the otherAgromycesspecies with validly published names were between 95.3 and 96.7 %. However, the DNA-DNA hybridization values obtained between strain AK-1Tand other related strains were well below the threshold that is required for the proposal of a novel species. The DNAG+Ccontent of the strain is 71.8 mol%. The above data in combination with the phenotypic distinctiveness of AK-1Tclearly indicate that the strain represents a novel species, for which the nameAgromyces arachidissp. nov. is proposed. The type strain is AK-1T(=MTCC 10524T= JCM 19251T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1373-1377 ◽  
Author(s):  
Xiao-Xia Zhang ◽  
Xue Tang ◽  
Rizwan Ali Sheirdil ◽  
Lei Sun ◽  
Xiao-Tong Ma

Two strains (J3-AN59T and J3-N84) of Gram-stain-negative, aerobic and rod-shaped bacteria were isolated from the roots of fresh rice plants. The 16S rRNA gene sequence similarity results showed that the similarity between strains J3-AN59T and J3-N84 was 100 %. Both strains were phylogenetically related to members of the genus Rhizobium , and they were most closely related to Rhizobium tarimense ACCC 06128T (97.43 %). Similarities in the sequences of housekeeping genes between strains J3-AN59T and J3-N84 and those of recognized species of the genus Rhizobium were less than 90 %. The polar lipid profiles of both strains were predominantly composed of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminophospholipid. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The DNA G+C contents of J3-AN59T and J3-N84 were 55.7 and 57.1 mol%, respectively. The DNA–DNA relatedness value between J3-AN59T and J3-N84 was 89 %, and strain J3-AN59T showed 9 % DNA–DNA relatedness to R. tarimense ACCC 06128T, the most closely related strain. Based on this evidence, we found that J3-AN59T and J3-N84 represent a novel species in the genus Rhizobium and we propose the name Rhizobium rhizoryzae sp. nov. The type strain is J3-AN59T ( = ACCC 05916T = KCTC 23652T).


Sign in / Sign up

Export Citation Format

Share Document