casamino acids
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 17)

H-INDEX

30
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Maria G. Savvidou ◽  
Angelo Ferraro ◽  
Petros Schinas ◽  
Diomi Mamma ◽  
Dimitris Kekos ◽  
...  

Microalgae are used in industrial and pharmaceutical applications. Their performance on biological applications may be improved by their immobilization. This study presents a way of cell immobilization using microalgae carrying magnetic properties. Nannochloropsis oceanica and Scenedasmus almeriensis cells were treated enzymatically (cellulase) and mechanically (glass beads), generating protoplasts as a means of incorporation of magnetic nanoparticles. Scanning electron microscopy images verified the successful cell wall destruction for both of the examined microalgae cells. Subsequently, protoplasts were transformed with magnetic nanoparticles by a continuous electroporation method and then cultured on a magnetic surface. Regeneration of transformed protoplasts was optimized using various organic carbon and amino acid supplements. Both protoplast preparation methods demonstrated similar efficiency. Casamino acids, as source of amino acids, were the most efficient compound for N. oceanica protoplasts regeneration in enzymatic and mechanical treatment, while for S. almeriensis protoplasts regeneration, fructose, as source of organic carbon, was the most effective. Protoplasts transformation efficiency values with magnetic nanoparticles after enzymatic or mechanical treatments for N. oceanica and S. almeriensis were 17.8% and 10.7%, and 18.6% and 15.7%, respectively. Finally, selected magnetic cells were immobilized and grown on a vertical magnetic surface exposed to light and without any supplement.


Author(s):  
Yurina Hashimoto ◽  
Akihiro Tame ◽  
Shigeki Sawayama ◽  
Junichi Miyazaki ◽  
Ken Takai ◽  
...  

A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2T, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2T grew at 25–40 °C (optimum 35 °C) and pH 5.5–7.0 (optimum 6.6) in the presence of 25–45 g l−1 NaCl (optimum 30 g l−1). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO2 as the sole carbon source for chemolithoautotrophic growth on H2. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO2. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth. The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2T is a member of the family Desulfobulbaceae , showing a sequence similarity of 94.3 % with Desulforhopalus singaporensis . Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2T and related genera of the family Desulfobulbaceae were 65.6–68.6 % and 53.1–62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2T represents a novel genus and species within the family Desulfobulbaceae , for which the name Desulfomarina profundi gen. nov., sp. nov. is proposed, with KT2T (=JCM 34118T = DSM 111364T) as the type strain.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S595-S595
Author(s):  
Elizabeth Nowak ◽  
Ekta Bansal ◽  
Anthony Baffoe-Bonnie ◽  
Nammalwar Sriranganathan ◽  
Thomas Kerkering ◽  
...  

Abstract Background Multidrug resistant Acinetobacter baumannii (MDR-Ab) is a Gram-negative bacterium known for causing severe nosocomial infections, attributed in part to its formation of biofilm. Siderophore is a virulence factor known to support biofilm formation by regulating iron availability. In this study, we screened 44 isolates of MDR-Ab from our Gram-negative repository to determine the strains that phenotypically form biofilm and produce siderophore. The results were compared to Pseudomonas aeruginosa PAO1, which produces both biofilm and siderophore. Methods Isolates were grown overnight in minimal M9 medium supplemented with casamino acids and hydroxyquinones at 37°C. Bacterial cells were normalized (to OD 600=0.01) and a standard diluted 10-3 tube was used in the study. A 96-well plate was inoculated with 100 microliters of each isolate in quadruplicates. This process was repeated in Tygon tubes with 50 microliters of each isolate in triplicates. The plate and Tygon tubes were incubated statically for 48 hours at 30°C and then stained with crystal violet. The contents were dissolved in 33% glacial acetic acid and analyzed by spectrophotometry to measure biofilm formation. Siderophore secretion was measured in supernatants with Chrome Azurol S (CAS) reagent and production was observed on CAS agar plates. Results High levels of biofilm formation were observed in 8 strains of MDR-Ab in the 96-well plate (3, 4, 9, 22, 61, 1010, 1012, 1022) and 6 strains in Tygon tubes (3, 4, 16, 66, 1002, 1010) (Fig. 1). There was minimal siderophore production in MDR-Ab isolates compared to PAO1 in both the 96-well plate and Tygon tubes (Fig. 2). Only 4 strains lacked siderophore production on CAS agar and were inversely negative for the secretion in medium. Figure 1 Biofilm formation in a 96-well plate and Tygon tubes (A) High levels of biofilm formation were observed in MDR-Ab strain numbers 3, 4, 9, 22, 61, 1010, 1012, 1022 in the 96-well plate. (B) High levels of biofilm formation were observed in MDR-Ab strain numbers 3, 4, 16, 66, 1002, 1010 in Tygon tubes. Figure 2 Degree of siderophore production in a 96-well plate and Tygon tubes Siderophore production of MDR-Ab was limited compared to PAO1 after inoculation in a 96-well plate (A) and in Tygon tubes (B). Conclusion Many strains of MDR-Ab readily form biofilm. Overall siderophore production is lower in MDR-Ab compared to consistent production by PAO1, but this does not appear to affect MDR-Ab’s ability to form biofilm. Unlike in PAO1, biofilm formation in MDR-Ab may occur independently of siderophore production. This research serves as a basis for understanding future MDR-Ab biofilm elimination in patient catheters and indwelling devices. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 12 ◽  
Author(s):  
Fabien Lamret ◽  
Jennifer Varin-Simon ◽  
Frédéric Velard ◽  
Christine Terryn ◽  
Céline Mongaret ◽  
...  

Staphylococcus aureus species is an important threat for hospital healthcare because of frequent colonization of indwelling medical devices such as bone and joint prostheses through biofilm formations, leading to therapeutic failure. Furthermore, bacteria within biofilm are less sensitive to the host immune system responses and to potential antibiotic treatments. We suggested that the periprosthetic bone environment is stressful for bacteria, influencing biofilm development. To provide insights into S. aureus biofilm properties of three strains [including one methicillin-resistant S. aureus (MRSA)] under this specific environment, we assessed several parameters related to bone conditions and expected to affect biofilm characteristics. We reported that the three strains harbored different behaviors in response to the lack of oxygen, casamino acids and glucose starvation, and high concentration of magnesium. Each strain presented different biofilm biomass and live adherent cells proportion, or matrix production and composition. However, the three strains shared common responses in a bone-like environment: a similar production of extracellular DNA and engagement of the SOS response. This study is a step toward a better understanding of periprosthetic joint infections and highlights targets, which could be common among S. aureus strains and for future antibiofilm strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rob Van Houdt ◽  
Joachim Vandecraen ◽  
Wietse Heylen ◽  
Natalie Leys ◽  
Pieter Monsieurs ◽  
...  

Cupriavidus metallidurans strains display a decreased viability when incubated in rich medium at a temperature of 37°C compared to their normal growth temperature of 30°C, a phenomenon coined “temperature-induced mortality and mutagenesis” (TIMM). To scrutinize this aberrant phenotype further, the contributions of specific inducers and protective agents were determined. Different growth media, including lysogeny broth (LB) and Schatz, and components, including casamino acids, in particular amino acids (proline, cysteine, glycine, glutamine, leucine, histidine and phenylalanine) and ammonium, were found to induce TIMM at 37°C. Sorbitol was found to counteract TIMM. Furthermore, although TIMM is well conserved within the C. metallidurans species, multiple and strain-specific TIMM inducers exist. Twenty-nine percent of the TIMM survivors inherited resistance to TIMM. Whole-genome sequencing of two resistant derivatives revealed an important role of an uncharacterized oxidoreductase, indicating putative metabolic poisoning when grown in high-concentration nitrogen-containing media at 37°C.


2021 ◽  
Author(s):  
Kevin Aumiller ◽  
Eric Stevens ◽  
Robert Scheffler ◽  
Zehra Tuzun Guvener ◽  
Emily Tung ◽  
...  

Lactobacilli and acetobacters are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of Drosophila melanogaster fruit flies. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growths. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would greatly facilitate identification of the precise metabolic interactions between these two groups of bacteria. While numerous such media have been developed that support specific strains of lactobacilli and acetobacters, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous Lactobacillus CDM, by modifying the nutrient abundances to improve growth of both groups of bacteria. We further simplified the medium by substituting casamino acids for individual amino acids and the standard Wolfe's vitamins and mineral stocks for individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. The new CDM and variations of it support robust growth of lactobacilli and acetobacters. We provide the composition and an example of its use to measure nutritional interactions.


Author(s):  
Ileana Pérez-Rodríguez ◽  
Jessica K. Choi ◽  
Karla Abuyen ◽  
Madeline Tyler ◽  
Cynthia Ronkowski ◽  
...  

A novel mesophilic, anaerobic, mixotrophic bacterium, with designated strains EPR-MT and HR-1, was isolated from a semi-extinct hydrothermal vent at the East Pacific Rise and from an Fe-mat at Lō'ihi Seamount, respectively. The cells were Gram-negative, pleomorphic rods of about 2.0 µm in length and 0.5 µm in width. Strain EPR-MT grew between 25 and 45 °C (optimum, 37.5–40 °C), 10 and 50 g l−1 NaCl (optimum, 15–20 g l−1) and pH 5.5 and 8.6 (optimum, pH 6.4). Strain HR-1 grew between 20 and 45 °C (optimum, 37.5–40 °C), 10 and 50 g l−1 NaCl (optimum, 15–25 g l−1) and pH 5.5 and 8.6 (optimum, pH 6.4). Shortest generation times with H2 as the primary electron donor, CO2 as the carbon source and ferric citrate as terminal electron acceptor were 6.7 and 5.5 h for EPR-MT and HR-1, respectively. Fe(OH)3, MnO2, AsO4 3-, SO4 2-, SeO4 2-, S2O3 2-, S0 and NO3 - were also used as terminal electron acceptors. Acetate, yeast extract, formate, lactate, tryptone and Casamino acids also served as both electron donors and carbon sources. G+C content of the genomic DNA was 59.4 mol% for strain EPR-MT and 59.2 mol% for strain HR-1. Phylogenetic and phylogenomic analyses indicated that both strains were closely related to each other and to Geothermobacter ehrlichii , within the class δ- Proteobacteria (now within the class Desulfuromonadia ). Based on phylogenetic and phylogenomic analyses in addition to physiological and biochemical characteristics, both strains were found to represent a novel species within the genus Geothermobacter , for which the name Geothermobacter hydrogeniphilus sp. nov. is proposed. Geothermobacter hydrogeniphilus is represented by type strain EPR-MT (=JCM 32109T=KCTC 15831T=ATCC TSD-173T) and strain HR-1 (=JCM 32110=KCTC 15832).


2021 ◽  
Author(s):  
Satoshi Ishii ◽  
Shogo Yoshimoto ◽  
Katsutoshi Hori

<p>The highly sticky bacterium <i>Acinetobacter</i> sp. Tol 5 adheres to various material surfaces via its cell surface nanofiber protein, AtaA. This adhesiveness has only been evaluated based on the amount of cells adhering to a surface. In this study, the adhesion force mapping of a single Tol 5 cell in liquid using the quantitative imaging mode of atomic force microscopy (AFM) revealed that the strong adhesion of Tol 5 was several nanonewtons, which was outstanding compared with other adhesive bacteria. The adhesion force of a cell became stronger with the increase in AtaA molecules present on the cell surface. Many fibers of peritrichate AtaA molecules simultaneously interact with a surface, strongly attaching the cell to the surface. The adhesion force of a Tol 5 cell was drastically reduced in the presence of 1% casamino acids but not in deionized water (DW), although both liquids decrease the adhesiveness of Tol 5 cells, suggesting that DW and casamino acids inhibit the cell approaching step and the subsequent direct interaction step of AtaA with surfaces, respectively. Heterologous production of AtaA provided non-adhesive <i>Acinetobacter baylyi</i> ADP1 cells with a strong adhesion force to AFM tip surfaces of silicon and gold.</p>


2021 ◽  
Author(s):  
Satoshi Ishii ◽  
Shogo Yoshimoto ◽  
Katsutoshi Hori

<p>The highly sticky bacterium <i>Acinetobacter</i> sp. Tol 5 adheres to various material surfaces via its cell surface nanofiber protein, AtaA. This adhesiveness has only been evaluated based on the amount of cells adhering to a surface. In this study, the adhesion force mapping of a single Tol 5 cell in liquid using the quantitative imaging mode of atomic force microscopy (AFM) revealed that the strong adhesion of Tol 5 was several nanonewtons, which was outstanding compared with other adhesive bacteria. The adhesion force of a cell became stronger with the increase in AtaA molecules present on the cell surface. Many fibers of peritrichate AtaA molecules simultaneously interact with a surface, strongly attaching the cell to the surface. The adhesion force of a Tol 5 cell was drastically reduced in the presence of 1% casamino acids but not in deionized water (DW), although both liquids decrease the adhesiveness of Tol 5 cells, suggesting that DW and casamino acids inhibit the cell approaching step and the subsequent direct interaction step of AtaA with surfaces, respectively. Heterologous production of AtaA provided non-adhesive <i>Acinetobacter baylyi</i> ADP1 cells with a strong adhesion force to AFM tip surfaces of silicon and gold.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248313
Author(s):  
Hirokazu Shimoshige ◽  
Hideki Kobayashi ◽  
Shigeru Shimamura ◽  
Toru Mizuki ◽  
Akira Inoue ◽  
...  

Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) and/or greigite (Fe3S4) nanoparticles in the cells. It is known that the magnetotactic Deltaproteobacteria are ubiquitous and inhabit worldwide in the sediments of freshwater and marine environments. Mostly known MTB belonging to the Deltaproteobacteria are dissimilatory sulfate-reducing bacteria that biomineralize bullet-shaped magnetite nanoparticles, but only a few axenic cultures have been obtained so far. Here, we report the isolation, cultivation and characterization of a dissimilatory sulfate-reducing magnetotactic bacterium, which we designate “strain FSS-1”. We found that the strain FSS-1 is a strict anaerobe and uses casamino acids as electron donors and sulfate as an electron acceptor to reduce sulfate to hydrogen sulfide. The strain FSS-1 produced bullet-shaped magnetite nanoparticles in the cells and responded to external magnetic fields. On the basis of 16S rRNA gene sequence analysis, the strain FSS-1 is a member of the genus Desulfovibrio, showing a 96.7% sequence similarity to Desulfovibrio putealis strain B7-43T. Futhermore, the magnetosome gene cluster of strain FSS-1 was different from that of Desulfovibrio magneticus strain RS-1. Thus, the strain FSS-1 is considered to be a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio.


Sign in / Sign up

Export Citation Format

Share Document