scholarly journals Oceanisphaera ostreae sp. nov., isolated from seawater of an oyster farm, and emended description of the genus Oceanisphaera Romanenko et al. 2003

2011 ◽  
Vol 61 (12) ◽  
pp. 2880-2884 ◽  
Author(s):  
Won-Chan Choi ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, motile, non-spore-forming and short rod- or rod-shaped bacterial strain, T-w6T, was isolated from seawater of an oyster farm in the South Sea, Korea. Strain T-w6T grew optimally at 25 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain T-w6T joined the cluster comprising Oceanisphaera species with a bootstrap resampling value of 90.8 %, and this cluster joined the clade comprising members of the genera Oceanimonas and Zobellella with a bootstrap resampling value of 100 %. Strain T-w6T exhibited 16S rRNA gene sequence similarity of 95.9 and 96.6 % to the type strains of Oceanisphaera litoralis and Oceanisphaera donghaensis, respectively. Strain T-w6T and the type strains of Oceanisphaera litoralis and Oceanisphaera donghaensis had Q-8 as the predominant ubiquinone and iso-C15 : 0 2-OH and/or C16 : 1ω7c, C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of strain T-w6T was 56.6 mol%. Mean DNA–DNA relatedness of strain T-w6T with Oceanisphaera litoralis DSM 15406T and Oceanisphaera donghaensis KCTC 12522T was 13 and 10 %, respectively. Phenotypic properties of strain T-w6T demonstrated that this strain could be distinguished from the other Oceanisphaera species. On the basis of the data presented, strain T-w6T is considered to represent a novel species of the genus Oceanisphaera, for which the name Oceanisphaera ostreae sp. nov. is proposed; the type strain is T-w6T ( = KCTC 23422T  = CCUG 60525T). An emended description of the genus Oceanisphaera is also presented.

2007 ◽  
Vol 57 (11) ◽  
pp. 2493-2497 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Peter Schumann ◽  
Tae-Kwang Oh

A Gram-positive, yellow-pigmented, non-motile and rod-shaped or coccoid bacterial strain, DS-61T, was isolated from soil from Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. The strain grew optimally at pH 6.5–7.5 and 25 °C in the presence of 1.0 % (w/v) NaCl. Strain DS-61T had peptidoglycan of the type based on l-Lys–l-Thr–d-Asp and contained galactose as the only whole-cell sugar. MK-9(H4) was the predominant menaquinone and anteiso-C15 : 0 and iso-C15 : 0 were the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The DNA G+C content was 72.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-61T is most closely affiliated to the genus Cellulosimicrobium, clustering with Cellulosimicrobium cellulans and Cellulosimicrobium funkei. The levels of 16S rRNA gene sequence similarity between strain DS-61T and the type strains of Cellulosimicrobium cellulans and Cellulosimicrobium funkei were 97.4–97.6 %. DNA–DNA relatedness data and differential phenotypic properties demonstrated that strain DS-61T is distinguishable from these two recognized Cellulosimicrobium species. On the basis of phenotypic, phylogenetic and genetic data, strain DS-61T represents a novel species of the genus Cellulosimicrobium, for which the name Cellulosimicrobium terreum sp. nov. is proposed. The type strain is DS-61T (=KCTC 19206T=DSM 18665T). An emended description of the genus is given.


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 539-544 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and rod-shaped bacterial strain, designated HWR-17T, was isolated from seawater of the Yellow Sea in Korea. Strain HWR-17T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HWR-17T clustered with the two Mariniflexile species in the family Flavobacteriaceae, exhibiting 16S rRNA gene sequence similarity of 97.1–97.2 % to their type strains and less than 95.7 % sequence similarity to other members of the family Flavobacteriaceae. Strain HWR-17T contained MK-6 as the predominant menaquinone and iso-C15 : 0 as the major fatty acid. The polar lipid profile of strain HWR-17T contained phosphatidylethanolamine, an unidentified aminolipid and four unidentified lipids. The DNA G+C content of strain HWR-17T was 35.7 mol% and it exhibited 11 and 10 % DNA–DNA relatedness, respectively, with Mariniflexile gromovii KCTC 12570T and Mariniflexile fucanivorans DSM 18792T. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain HWR-17T is distinguishable from the two recognized Mariniflexile species. On the basis of the data presented, strain HWR-17T is considered to represent a novel species of the genus Mariniflexile, for which the name Mariniflexile aquimaris sp. nov. is proposed. The type strain is HWR-17T ( = KCTC 23346T  = CCUG 60529T). An emended description of the genus Mariniflexile is also proposed.


2011 ◽  
Vol 61 (7) ◽  
pp. 1549-1553 ◽  
Author(s):  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming bacterial strain, BDR-9T, was isolated from soil collected from Boryung on the west coast of the Korean peninsula, and its taxonomic position was investigated by using a polyphasic study. Strain BDR-9T grew optimally at 25 °C, at pH 6.0–7.5 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BDR-9T fell within the clade comprising species of the genus Mucilaginibacter within the phylum Bacteroidetes. 16S rRNA gene sequence similarity values between strain BDR-9T and the type strains of species of the genus Mucilaginibacter were in the range 94.0–95.6 %. Strain BDR-9T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 44.3 mol%. Differential phenotypic properties and phylogenetic distinctiveness of strain BDR-9T demonstrated that this strain is distinguishable from species of the genus Mucilaginibacter. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BDR-9T is considered to represent a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter boryungensis sp. nov. is proposed. The type strain is BDR-9T ( = KCTC 23157T  = CCUG 59599T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 511-514 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh

A Gram-stain-negative, non-motile, non-spore-forming bacterial strain, YCS-5T, was isolated from seawater off the southern coast of Korea. Strain YCS-5T grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain YCS-5T fell within the clade comprising Kangiella species. Strain YCS-5T exhibited 16S rRNA gene sequence similarity values of 96.6, 95.7 and 97.9 % to the type strains of Kangiella koreensis, Kangiella aquimarina and Kangiella japonica, respectively, and less than 89.8 % to strains of other species used in the phylogenetic analysis. Strain YCS-5T contained Q-8 as the predominant ubiquinone and iso-C17 : 0, iso-C15 : 0, iso-C11 : 0 3-OH and iso-C17 : 1ω9c as the major fatty acids. The polar lipid profile of strain YCS-5T was similar to that of K. koreensis SW-125T, with phosphatidylglycerol and an unidentified aminolipid as major polar lipids. The DNA G+C content was 47 mol%. The mean DNA–DNA relatedness value between strain YCS-5T and K. japonica JCM 16211T was 12 %. Differential phenotypic properties and the phylogenetic and genetic distinctiveness of strain YCS-5T demonstrated that this strain is distinguishable from other Kangiella species. On the basis of the data presented, strain YCS-5T is considered to represent a novel species of the genus Kangiella, for which the name Kangiella geojedonensis sp. nov. is proposed; the type strain is YCS-5T ( = KCTC 23420T = CCUG 60526T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2587-2591 ◽  
Author(s):  
Young-Ok Kim ◽  
Kyung-Kil Kim ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Jeong-Ho Lee ◽  
...  

A Gram-negative, motile, non-spore-forming and lipolytic bacterial strain, designated Gung47T, was isolated from a tidal flat on the west coast of Korea. Strain Gung47T grew optimally at 30 °C and with 2−5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain Gung47T belonged to the genus Photobacterium. Strain Gung47T exhibited 98.1 % 16S rRNA gene sequence similarity with Photobacterium rosenbergii LMG 22223T and 94.3–96.3 % similarity with other type strains of species of the genus Photobacterium. Strain Gung47T exhibited 47 % DNA–DNA relatedness to P. rosenbergii LMG 22223T. Strain Gung47T contained Q-8 as the predominant ubiquinone and C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C16 : 0 and C18 : 1 ω7c as the major fatty acids. In this study, two closely related type strains, P. rosenbergii LMG 22223T and Photobacterium halotolerans LMG 22194T, were also found to have Q-8 as the predominant ubiquinone. The DNA G+C content of strain Gung47T was 50.6 mol%. The differential phenotypic properties together with the phylogenetic and genetic distinctiveness of strain Gung47T demonstrated that this strain is distinguishable from recognized Photobacterium species. Therefore, strain Gung47T is considered to represent a novel species of the genus Photobacterium, for which the name Photobacterium gaetbulicola sp. nov. is proposed. The type strain is Gung47T (=KCTC 22804T =CCUG 58399T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1804-1808 ◽  
Author(s):  
Soo-Young Lee ◽  
Mi-Hwa Lee ◽  
Jung-Hoon Yoon

A Gram-negative, aerobic, non-flagellated, non-gliding rod, designated T-y2T, was isolated from seawater of an oyster farm in the South Sea, Korea. Strain T-y2T grew optimally at 25 °C, at pH 7.0–7.5 and with 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain T-y2T belonged to the genus Mesonia and exhibited 94.3–96.4 % 16S rRNA gene sequence similarity with the type strains of species of the genus Mesonia . The DNA G+C content of strain T-y2T was 42.1 mol%. Strain T-y2T contained MK-6 as the predominant menaquinone and anteiso-C15 : 0 and iso-C15 : 0 as the major fatty acids. The only major phospholipid identified was phosphatidylethanolamine. The differential phenotypic properties and phylogenetic distinctiveness of strain T-y2T revealed that it is distinguishable from recognized members of the genus Mesonia . On the basis of the data presented here, strain T-y2T is considered to represent a novel species of the genus Mesonia , for which the name Mesonia ostreae sp. nov. is proposed. The type strain is T-y2T ( = KCTC 23500T = CCUG 60802T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1363-1367 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Stenotrophomonas-like bacterial strain, DS-16T, was isolated from soil from Dokdo, Korea, and subjected to a polyphasic taxonomic study. Strain DS-16T grew optimally at pH 6.0–7.0 and 30 °C in the presence of 0.5 % (w/v) NaCl. It contained Q-8 as the predominant ubiquinone and iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c as the major fatty acids. The DNA G+C content was 65.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-16T joined the cluster comprising Stenotrophomonas species. The levels of 16S rRNA gene sequence similarity between strain DS-16T and the type strains of Stenotrophomonas species ranged from 95.5 to 97.5 %. DNA–DNA relatedness data and differential phenotypic properties, together with the phylogenetic distinctiveness of strain DS-16T, demonstrated that this novel strain differs from Stenotrophomonas species with validly published names. On the basis of phenotypic, phylogenetic and genetic data, strain DS-16T (=KCTC 12543T=CIP 108839T) should be classified in the genus Stenotrophomonas as a member of a novel species, for which the name Stenotrophomonas dokdonensis sp. nov. is proposed.


2007 ◽  
Vol 57 (11) ◽  
pp. 2462-2466 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped bacterial strain, DS-57T, was isolated from soil from Dokdo, Korea, and its taxonomic position was investigated using a polyphasic approach. It grew optimally at 25 °C and in trypticase soy broth without NaCl and trypticase soy broth with 0.5 % NaCl. Strain DS-57T contained MK-7 as the predominant menaquinone and iso-C15 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and iso-C17 : 0 3-OH as the major fatty acids. The DNA G+C content was 39.7 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-57T was most closely related to the genus Pedobacter of the family Sphingobacteriaceae, clustering coherently with Pedobacter suwonensis, Pedobacter roseus and Pedobacter sandarakinus. Strain DS-57T exhibited 16S rRNA gene sequence similarity values of 99.2, 97.9 and 97.2 % with respect to the type strains of P. suwonensis, P. roseus and P. sandarakinus, respectively, and values less than 95.6 % with respect to the type strains of other Pedobacter species. Strain DS-57T exhibited levels of DNA–DNA relatedness of 45, 17 and 15 % with respect to the type strains of P. suwonensis, P. roseus and P. sandarakinus, respectively. Differential phenotypic properties, together with the phylogenetic distinctiveness and the DNA–DNA relatedness data, were sufficient to allow the classification of strain DS-57T as a species that is separate from recognized Pedobacter species. On the basis of phenotypic properties and phylogenetic distinctiveness, therefore, strain DS-57T represents a novel species of the genus Pedobacter, for which the name Pedobacter terrae sp. nov. is proposed. The type strain is DS-57T (=KCTC 12762T=DSM 17933T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1113-1117 ◽  
Author(s):  
Sooyeon Park ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative-staining, aerobic, non-motile and rod-shaped bacterial strain, S5-5T, was isolated from a tidal flat sediment at Saemankum on the west coast of Korea and subjected to a polyphasic taxonomic investigation. Strain S5-5T grew optimally at pH 7.5–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. It did not produce bacteriochlorophyll a. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain S5-5T is phylogenetically closely related to the genus Roseivivax, joining the cluster comprising the two recognized Roseivivax species. The 16S rRNA gene sequence similarity between strain S5-5T and members of the genus Roseivivax was in the range 95.0–96.7 %. Strain S5-5T contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and 11-methyl C18 : 1 ω7c as the major fatty acids. The DNA G+C content was 68.2 mol%. Differential phenotypic properties, together with the phylogenetic distinctiveness, demonstrated that strain S5-5T could be differentiated from Roseivivax species. On the basis of the data presented, strain S5-5T is considered to represent a novel species of the genus Roseivivax, for which the name Roseivivax lentus sp. nov. is proposed. The type strain is S5-5T (=KCTC 22708T =CCUG 57755T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1610-1615 ◽  
Author(s):  
Mi-Hwa Lee ◽  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-flagellated, gliding, rod-shaped bacterial strain, designated WT-MY15T, was isolated from wood falls in the South Sea in Korea and subjected to a polyphasic taxonomic study. Strain WT-MY15T grew optimally at pH 7.0–8.0, at 25 °C and in the presence of 2.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain WT-MY15T clustered with the type strains of two Olleya species, exhibiting 16S rRNA gene sequence similarity values of 97.7–98.1 %. Strain WT-MY15T contained MK-6 as the predominant menaquinone. The fatty acid and polar lipid profiles of strain WT-MY15T were similar to those of Olleya aquimaris L-4T and Olleya marilimosa CIP 108537T. The DNA G+C content of strain WT-MY15T was 42.8 mol% and its mean DNA–DNA relatedness values with O. aquimaris L-4T and O. marilimosa CIP 108537T were 8.3 and 5.6 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WT-MY15T is separate from the two recognized species of the genus Olleya . On the basis of the data presented, strain WT-MY15T is considered to represent a novel species of the genus Olleya , for which the name Olleya namhaensis sp. nov. is proposed. The type strain is WT-MY15T ( = KCTC 23673T = CCUG 61507T). An emended description of the genus Olleya is also presented.


Sign in / Sign up

Export Citation Format

Share Document