scholarly journals Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov.

2004 ◽  
Vol 54 (5) ◽  
pp. 1439-1452 ◽  
Author(s):  
Yaacov Davidov ◽  
Edouard Jurkevitch

A phylogenetic analysis of Bdellovibrio-and-like organisms (BALOs) was performed. It was based on the characterization of 71 strains and on all consequent 16S rRNA gene sequences available in databases, including clones identified by data-mining, totalling 120 strains from very varied biotopes. Amplified rDNA restriction analysis (ARDRA) accurately reflected the diversity and phylogenetic affiliation of BALOs, thereby providing an efficient screening tool. Extensive phylogenetic analysis of the 16S rRNA gene sequences revealed great diversity within the Bdellovibrio (>14 % divergence) and Bacteriovorax (>16 %) clades, which comprised nine and eight clusters, respectively, exhibiting more than 3 % intra-cluster divergence. The clades diverged by more than 20 %. The analysis of conserved 16S rRNA secondary structures showed that Bdellovibrio contained motifs atypical of the δ-Proteobacteria, suggesting that it is ancestral to Bacteriovorax. While none of the Bdellovibrio strains were of marine origin, Bacteriovorax included separate soil/freshwater and marine-specific groups. On the basis of their extensive diversity and the large distance separating the groups, it is proposed that Bacteriovorax starrii be placed into a new genus, Peredibacter gen. nov., with Peredibacter starrii A3.12T (=ATCC 15145T=NCCB 72004T) as its type strain. Also proposed is a redefinition of the Bdellovibrio and the Bacteriovorax–Peredibacter lineages as two different families, i.e. ‘Bdellovibrionaceae’ and a new family, Bacteriovoracaceae. Also, a re-evaluation of oligonucleotides targeting BALOs is presented, and the implications of the large diversity of these organisms and of their distribution in very different environments are discussed.

2007 ◽  
Vol 73 (20) ◽  
pp. 6682-6685 ◽  
Author(s):  
Daniel P. R. Herlemann ◽  
Oliver Geissinger ◽  
Andreas Brune

ABSTRACT The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.


2018 ◽  
Author(s):  
Mingwei Cai ◽  
Yang Liu ◽  
Zhichao Zhou ◽  
Yuchun Yang ◽  
Jie Pan ◽  
...  

AbstractAsgard is a newly proposed archaeal superphylum. Phylogenetic position of Asgard archaea and its relationships to the origin of eukaryotes is attracting increasingly research interest. However, in-depth knowledge of their diversity, distribution, and activity of Asgard archaea remains limited. Here, we used phylogenetic analysis to cluster the publicly available Asgard archaeal 16S rRNA gene sequences into 13 subgroups, including five previously unknown subgroups. These lineages were widely distributed in anaerobic environments, with the majority of 16S rRNA gene sequences (92%) originating from sediment habitats. Co-occurrence analysis revealed potential relationships between Asgard, Bathyarchaeota, and Marine Benthic Group D archaea. Genomic analysis suggested that Asgard archaea are potentially mixotrophic microbes with divergent metabolic capabilities. Importantly, metatranscriptomics confirmed the versatile lifestyles of Lokiarchaeota and Thorarchaeota, which can fix CO2using the tetrahydromethanopterin Wood-Ljungdahl pathway, perform acetogenesis, and degrade organic matters. Overall, this study broadens the understandings of Asgard archaea ecology, and also provides the first evidence to support a transcriptionally active mixotrophic lifestyle of Asgard archaea, shedding light on the potential roles of these microorganisms in the global biogeochemical cycling.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 723-731 ◽  
Author(s):  
Ronel Roberts ◽  
Emma T. Steenkamp ◽  
Gerhard Pietersen

Greening disease of citrus in South Africa is associated with ‘Candidatus Liberibacter africanus’ (Laf), a phloem-limited bacterium vectored by the sap-sucking insect Trioza erytreae (Triozidae). Despite the implementation of control strategies, this disease remains problematic, suggesting the existence of reservoir hosts to Laf. The current study aimed to identify such hosts. Samples from 234 trees of Clausena anisata, 289 trees of Vepris lanceolata and 231 trees of Zanthoxylum capense were collected throughout the natural distribution of these trees in South Africa. Total DNA was extracted from samples and tested for the presence of liberibacters by a generic Liberibacter TaqMan real-time PCR assay. Liberibacters present in positive samples were characterized by amplifying and sequencing rplJ, omp and 16S rRNA gene regions. The identity of tree host species from which liberibacter sequences were obtained was verified by sequencing host rbcL genes. Of the trees tested, 33 specimens of Clausena, 17 specimens of Vepris and 10 specimens of Zanthoxylum tested positive for liberibacter. None of the samples contained typical citrus-infecting Laf sequences. Phylogenetic analysis of 16S rRNA gene sequences indicated that the liberibacters obtained from Vepris and Clausena had 16S rRNA gene sequences identical to that of ‘Candidatus Liberibacter africanus subsp. capensis’ (LafC), whereas those from Zanthoxylum species grouped separately. Phylogenetic analysis of the rplJ and omp gene regions revealed unique clusters for liberibacters associated with each tree species. We propose the following names for these novel liberibacters: ‘Candidatus Liberibacter africanus subsp. clausenae’ (LafCl), ‘Candidatus Liberibacter africanus subsp. vepridis’ (LafV) and ‘Candidatus Liberibacter africanus subsp. zanthoxyli’ (LafZ). This study did not find any natural hosts of Laf associated with greening of citrus. While native citrus relatives were shown to be infected with Laf-related liberibacters, nucleotide sequence data suggest that these are not alternative sources of Laf to citrus orchards, per se.


2001 ◽  
Vol 67 (7) ◽  
pp. 3077-3085 ◽  
Author(s):  
Wolfgang Eder ◽  
Linda L. Jahnke ◽  
Mark Schmidt ◽  
Robert Huber

ABSTRACT The brine-seawater interface of the Kebrit Deep, northern Red Sea, was investigated for the presence of microorganisms using phylogenetic analysis combined with cultivation methods. Under strictly anaerobic culture conditions, novel halophiles were isolated. The new rod-shaped isolates belong to the halophilic genus Halanaerobiumand are the first representatives of the genus obtained from deep-sea, anaerobic brine pools. Within the genus Halanaerobium, they represent new species which grow chemoorganotrophically at NaCl concentrations ranging from 5 to 34%. The cellular fatty acid compositions are consistent with those of otherHalanaerobium representatives, showing unusually large amounts of Δ7 and Δ11 16:1 fatty acids. Phylogenetic analysis of the brine-seawater interface sample revealed the presence of various bacterial 16S rRNA gene sequences dominated by cultivated members of the bacterial domain, with the majority affiliated with the genusHalanaerobium. The new Halanaerobium 16S rRNA clone sequences showed the highest similarity (99.9%) to the sequence of isolate KT-8-13 from the Kebrit Deep brine. In this initial survey, our polyphasic approach demonstrates that novel halophiles thrive in the anaerobic, deep-sea brine pool of the Kebrit Deep, Red Sea. They may contribute significantly to the anaerobic degradation of organic matter enriched at the brine-seawater interface.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Irene Cano ◽  
Ronny van Aerle ◽  
Stuart Ross ◽  
David W. Verner-Jeffreys ◽  
Richard K. Paley ◽  
...  

ABSTRACTOne of the fastest growing fisheries in the UK is the king scallop (Pecten maximusL.), also currently rated as the second most valuable fishery. Mass mortality events in scallops have been reported worldwide, often with the causative agent(s) remaining uncharacterized. In May 2013 and 2014, two mass mortality events affecting king scallops were recorded in the Lyme Bay marine protected area (MPA) in Southwest England. Histopathological examination showed gill epithelial tissues infected with intracellular microcolonies (IMCs) of bacteria resemblingRickettsia-like organisms (RLOs), often with bacteria released in vascular spaces. Large colonies were associated with cellular and tissue disruption of the gills. Ultrastructural examination confirmed the intracellular location of these organisms in affected epithelial cells. The 16S rRNA gene sequences of the putative IMCs obtained from infected king scallop gill samples, collected from both mortality events, were identical and had a 99.4% identity to 16S rRNA gene sequences obtained from “CandidatusEndonucleobacter bathymodioli” and 95% withEndozoicomonasspecies.In situhybridization assays using 16S rRNA gene probes confirmed the presence of the sequenced IMC gene in the gill tissues. Additional DNA sequences of the bacterium were obtained using high-throughput (Illumina) sequencing, and bioinformatic analysis identified over 1,000 genes with high similarity to protein sequences fromEndozoicomonasspp. (ranging from 77 to 87% identity). Specific PCR assays were developed and applied to screen for the presence of IMC 16S rRNA gene sequences in king scallop gill tissues collected at the Lyme Bay MPA during 2015 and 2016. There was 100% prevalence of the IMCs in these gill tissues, and the 16S rRNA gene sequences identified were identical to the sequence found during the previous mortality event.IMPORTANCEMolluscan mass mortalities associated with IMCs have been reported worldwide for many years; however, apart from histological and ultrastructural characterization, characterization of the etiological agents is limited. In the present work, we provide detailed molecular characterization of anEndozoicomonas-like organism (ELO) associated with an important commercial scallop species.


2004 ◽  
Vol 54 (4) ◽  
pp. 1177-1184 ◽  
Author(s):  
Irene Wagner-Döbler ◽  
Holger Rheims ◽  
Andreas Felske ◽  
Aymen El-Ghezal ◽  
Dirk Flade-Schröder ◽  
...  

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97·4 % sequence similarity to Sulfitobacter mediterraneus and 96·5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1ω7c, 18 : 0, 16 : 1ω7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1ω7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).


2006 ◽  
Vol 50 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Shinji Sakata ◽  
Chun Sun Ryu ◽  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Hidenori Hayashi ◽  
...  

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1997-2003 ◽  
Author(s):  
Fehmida Bibi ◽  
Eu Jin Chung ◽  
Ajmal Khan ◽  
Che Ok Jeon ◽  
Young Ryun Chung

During a study of endophytic bacteria from coastal dune plants, a bacterial strain, designated YC6881T, was isolated from the root of Rosa rugosa collected from the coastal dune areas of Namhae Island, Korea. The bacterium was found to be Gram-staining-negative, motile, halophilic and heterotrophic with a single polar flagellum. Strain YC6881T grew at temperatures of 4–37 °C (optimum, 28–32 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0), and at NaCl concentrations in the range of 0–7.5 % (w/v) (optimum, 4–5 % NaCl). Strain YC6881T was catalase- and oxidase-positive and negative for nitrate reduction. According to phylogenetic analysis using 16S rRNA gene sequences, strain YC6881T belonged to the genus Rhizobium and showed the highest 16S rRNA gene sequence similarity of 96.9 % to Rhizobium rosettiformans , followed by Rhizobium borbori (96.3 %), Rhizobium radiobacter (96.1 %), Rhizobium daejeonense (95.9 %), Rhizobium larrymoorei (95.6 %) and Rhizobium giardinii (95.4 %). Phylogenetic analysis of strain YC6881T by recA, atpD, glnII and 16S–23S intergenic spacer (IGS) sequences all confirmed the phylogenetic arrangements obtained by using 16S rRNA gene sequences. Cross-nodulation tests showed that strain YC6881T was a symbiotic bacterium that nodulated Vigna unguiculata and Pisum sativum. The major components of the cellular fatty acids were C18 : 1ω7c (53.7 %), C19 : 0 cyclo ω8c (12.6 %) and C12 : 0 (8.1 %). The DNA G+C content was 52.8 mol%. Phenotypic and physiological tests with respect to carbon source utilization, antibiotic resistance, growth conditions, phylogenetic analyses of housekeeping genes recA, atpD and glnII, and fatty acid composition could be used to discriminate strain YC6881T from other species of the genus Rhizobium in the same sublineage. Based on the results obtained in this study, strain YC6881T is considered to represent a novel species of the genus Rhizobium , for which the name Rhizobium halophytocola sp. nov. is proposed. The type strain is YC6881T ( = KACC 13775T = DSM 21600T).


Sign in / Sign up

Export Citation Format

Share Document