Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora

2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3423-3429 ◽  
Author(s):  
Reiner Rincón-Rosales ◽  
José M. Villalobos-Escobedo ◽  
Marco A. Rogel ◽  
Julio Martinez ◽  
Ernesto Ormeño-Orrillo ◽  
...  

Calliandra grandiflora has been used as a medicinal plant for thousands of years in Mexico. Rhizobial strains were obtained from root nodules of C. grandiflora collected from different geographical regions in Chiapas and characterized by BOX-PCR, amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. Most isolates corresponded to members of the genus Rhizobium and those not related to species with validly published names were further characterized by recA, atpD, rpoB and nifH gene phylogenies, phenotypic and DNA–DNA hybridization analyses. Three novel related species of the genus Rhizobium within the ‘ Rhizobium tropici group’ share the same symbiovar that may be named sv. calliandrae. The names proposed for the three novel species are Rhizobium calliandrae sp. nov. (type strain, CCGE524T = ATCC BAA-2435T = CIP 110456T = LBP2-1T), Rhizobium mayense sp. nov. (type strain, CCGE526T = ATCC BAA-2446T = CIP 110454T = NSJP1-1T) and Rhizobium jaguaris sp. nov. (type strain, CCGE525T = ATCC BAA-2445T = CIP 110453T = SJP1-2T).

Author(s):  
Junjie Zhang ◽  
Shanshan Peng ◽  
Mitchell Andrews ◽  
Chunzeng Liu ◽  
Yimin Shang ◽  
...  

Three fast-growing rhizobial strains isolated from effective nodules of common vetch (Vicia sativa L.) were characterized using a polyphasic approach. All three strains were assigned to the genus Rhizobium on the basis of the results of 16S rRNA gene sequence analysis. Phylogenetic analysis based on concatenated atpD-recA genes separated the strains into a distinct lineage represented by WYCCWR 11279T, which showed average nucleotide identity values of 95.40 and 93.61 % with the most similar phylogenetic type strains of Rhizobium sophorae CCBAU 03386T and Rhizobium laguerreae FB TT, respectively. The digital DNA–DNA hybridization relatedness values between WYCCWR 11279T and the closest related type strains were less than 70 %. Therefore, a novel rhizobial species is proposed, Rhizobium changzhiense sp. nov., and strain WYCCWR 11279T (=HAMBI 3709T=LMG 31534T) is designated as the type strain for the novel species.


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2624-2630 ◽  
Author(s):  
Vikram Surendra ◽  
Pant Bhawana ◽  
Korpole Suresh ◽  
T. N. R. Srinivas ◽  
Pinnaka Anil Kumar

A novel Gram-negative, rod-shaped, non-motile, non-sporulating bacterium, designated strain K1T, was isolated from an estuarine water sample collected from Kochi, Kerala, India. Colonies on marine agar were circular, 2.0–2.5 mm in diameter, shiny, yellow, translucent and convex with entire margins. Strain K1T was negative for ornithine decarboxylase, lysine decarboxylase, nitrate reduction and H2S production. The fatty acids were dominated by iso-branched components with a high abundance of iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH; MK-6 (64 %) and MK-7 (34 %) were found as major respiratory quinones; and phosphatidylethanolamine, two unidentified aminolipids, four unidentified phospholipids and two unidentified lipids were major polar lipids. The DNA G+C content of strain K1T was 46.1 mol%. 16S rRNA gene sequence analysis indicated that strain K1T was related most closely to the type strain of Zhouia amylolytica (pairwise sequence similarity of 93.0 %). Phylogenetic analysis showed that strain K1T formed a distinct branch within the family Flavobacteriaceae and clustered with the clade comprising species of the genera Zhouia , Coenonia and Capnocytophaga , being phylogenetically most closely related to the type strain of Zhouia amylolytica at a distance of 9.2 % (90.8 % similarity). Other species of the genera within the same clade were related to strain K1T at distances of 15.0–23.1 %. Based on phenotypic and chemotaxonomic characteristics and on phylogenetic inference, strain K1T is considered to represent a novel species of a new genus in the family Flavobacteriaceae , for which the name Imtechella halotolerans gen. nov., sp. nov. is proposed. The type strain of Imtechella halotolerans is K1T ( = MTCC 11055T = JCM 17677T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1496-1502 ◽  
Author(s):  
Jin Li ◽  
Yan Xu ◽  
Jiarong Feng ◽  
Mingqi Zhong ◽  
Qingyi Xie ◽  
...  

A Gram-stain-negative, aerobic, non-motile and rod-shaped marine bacterium, CW2-9T, was isolated from algae collected from Fujian Province in PR China. 16S rRNA gene sequence analysis showed that this strain was affiliated with the genus Tamlana in the family Flavobacteriaceae of the class Flavobacteriia and was very similar to the type strain Tamlana sedimentorum MCCC 1A10799T (96.3 % sequence similarity). The whole genome of strain CW2-9T comprised 3 997 513 bp with a G+C content of 34.3 mol%. The average nucleotide identity value between strain CW2-9T and T. sedimentorum MCCC 1A10799T was 73.8 %. Growth was observed from 15 to 40 °C (optimum, 30 °C), at pH from pH 5.0 to 10.0 (pH 8.0) and in the presence of 0–4 % (w/v) NaCl (0–1 %). The major fatty acids (>10 % of the total) were iso-C15 : 0, iso G-C15 : 1, iso-C17 : 0 3-OH and anteiso-C15 : 0. The predominant menaquinone was MK-6. The combined phylogenetic, physiological and chemotaxonomic data indicate that strain CW2-9T represents a novel species in the genus Tamlana , for which the name Tamlana fucoidanivorans sp. nov. is proposed. The type strain is CW2-9T (=CICC 24749T=KCTC 72389T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1470-1485 ◽  
Author(s):  
An Coorevits ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Liesbeth Lebbe ◽  
Paul De Vos ◽  
...  

Sixty-two strains of thermophilic aerobic endospore-forming bacteria were subjected to polyphasic taxonomic study including 16S rRNA gene sequence analysis, polar lipid and fatty acid analysis, phenotypic characterization, and DNA–DNA hybridization experiments. Distinct clusters of the species Geobacillus stearothermophilus , Geobacillus thermodenitrificans , Geobacillus toebii and Geobacillus thermoglucosidasius were formed, allowing their descriptions to be emended, and the distinctiveness of the poorly represented species Geobacillus jurassicus , Geobacillus subterraneus and Geobacillus caldoxylosilyticus was confirmed. It is proposed that the name Geobacillus thermoglucosidasius be corrected to Geobacillus thermoglucosidans nom. corrig. Bacillus thermantarcticus clustered between Geobacillus species on the basis of 16S rRNA gene sequence analysis, and its transfer to the genus Geobacillus as Geobacillus thermantarcticus comb. nov. (type strain LMG 23032T = DSM 9572T = strain M1T = R-35644T) is proposed. The above-mentioned species, together with Geobacillus thermoleovorans and Geobacillus thermocatenulatus , form a monophyletic cluster representing the genus Geobacillus . The distinctiveness of ‘Geobacillus caldoproteolyticus’ was confirmed and it is proposed that it be accommodated, along with Geobacillus tepidamans , in the genus Anoxybacillus as Anoxybacillus caldiproteolyticus sp. nov. (type strain DSM 15730T = ATCC BAA-818T = LMG 26209T = R-35652T) and Anoxybacillus tepidamans comb. nov. (type strain LMG 26208T = ATCC BAA-942T = DSM 16325T = R-35643T), respectively. The type strain of Geobacillus debilis was not closely related to any members of the genera Anoxybacillus and Geobacillus , and it is proposed that this species be placed in the new genus Caldibacillus as Caldibacillus debilis gen. nov. comb. nov. The type strain of the type species, Caldibacillus debilis, is LMG 23386T ( = DSM 16016T = NCIMB 13995T = TfT = R-35653T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2505-2510 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Anne Willems

Gram-negative, rod-shaped bacteria were isolated from root nodules of Lupinus polyphyllus, Lathyrus latifolius and Robinia pseudoacacia. Based on the 16S rRNA gene phylogeny, they were closely related to Bosea species (100–97 % similarity), belonging to the class Alphaproteobacteria , family Bradyrhizobiaceae . The closest relatives of LMG 26383T, LMG 26379T and LMG 26381T were respectively the type strains of Bosea thiooxidans (99.6 %), B. eneae (98.3 %) and B. minatitlanensis (99.0 %). Chemotaxonomic data, including major fatty acid profiles, supported the assignment of our strains to the genus Bosea . Analysis of the concatenated sequences of five housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) and the results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from each other and from the five Bosea species with validly published names. No nodA or nodC genes could be amplified, while nifH PCR gave non-specific products. On the basis of genotypic and phenotypic data, three novel species, Bosea lupini sp. nov. (type strain LMG 26383T  = CCUG 61248T  = R-45681T), Bosea lathyri sp. nov. (type strain LMG 26379T  = CCUG 61247T  = R-46060T) and Bosea robiniae sp. nov. (type strain LMG 26381T  = CCUG 61249T  = R-46070T), are proposed.


2020 ◽  
Vol 70 (3) ◽  
pp. 2084-2088 ◽  
Author(s):  
Tobias Eisenberg ◽  
Stefanie P. Glaeser ◽  
Jochen Blom ◽  
Peter Kämpfer

The reclassification of Leptotrichia goodfellowii as Pseudoleptotrichia goodfellowii gen. nov., comb. nov. is proposed because of the separate phylogenetic position on the basis of the results of 16S rRNA gene sequence analysis, the genomic differences from all other Leptotrichia species and phenotypic differences from Leptotrichia species. The species Pseudoleptotrichia goodfellowii is the type species of the genus. The type strain is LB 57T, CCUG 32286 T, DSM 19756T.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2690-2699 ◽  
Author(s):  
S. Wellner ◽  
N. Lodders ◽  
S. P. Glaeser ◽  
P. Kämpfer

Three pink-pigmented, aerobic, Gram-stain-negative, rod-shaped and facultatively methylotrophic strains were isolated from the phyllosphere of Trifolium repens and Cerastium holosteoides. 16S rRNA gene sequence analysis support the affiliation of all strains to the genus Methylobacterium . The closest relatives of strains C34T and T5 were Methylobacterium gnaphalii 23eT (98.0 and 98.5 % sequence similarity, respectively) and Methylobacterium organophilum JCM 2833T (97.0 and 97.2 %, respectively). Strain TA73T showed the highest sequence similarities to Methylobacterium marchantiae JT1T and Methylobacterium bullatum F3.2T (both 97.9 %), followed by Methylobacterium phyllosphaerae CBMB27T and Methylobacterium brachiatum DSM 19569T (both 97.8 %), Methylobacterium cerastii C15T and Methylobacterium radiotolerans JCM 2831T (both 97.7 %). The major components in the fatty acid profiles were C18 : 1ω7c, C16 : 0 and one unknown fatty acid for strain TA73T and C18 : 1ω7c, C16 : 1ω7c/iso-C15 : 0 2-OH, C18 : 0 and C16 : 0 for strains C34T and T5. Physiological and biochemical analysis, including DNA–DNA hybridization, revealed clear differences between the investigated strains and their closest phylogenetic neighbours. DNA–DNA hybridization studies also showed high similarities between strains C34T and T5 (59.6–100 %). Therefore, the isolates represent two novel species within the genus Methylobacterium , for which the names Methylobacterium trifolii sp. nov. (type strain TA73T = LMG 25778T = CCM 7786T) and Methylobacterium thuringiense sp. nov. (type strain C34T = LMG 25777T = CCM 7787T) are proposed.


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2650-2656 ◽  
Author(s):  
Chun Tao Gu ◽  
Chun Yan Li ◽  
Li Jie Yang ◽  
Gui Cheng Huo

A Gram-stain-negative bacterial strain, 10-17T, was isolated from traditional sourdough in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA–DNA hybridization and an analysis of phenotypic features. Strain 10-17T was phylogenetically related to Enterobacter hormaechei CIP 103441T, Enterobacter cancerogenus LMG 2693T, Enterobacter asburiae JCM 6051T, Enterobacter mori LMG 25706T, Enterobacter ludwigii EN-119T and Leclercia adecarboxylata LMG 2803T, having 99.5 %, 99.3 %, 98.7 %, 98.5 %, 98.4 % and 98.4 % 16S rRNA gene sequence similarity, respectively. On the basis of polyphasic characterization data obtained in the present study, a novel species, Enterobacter xiangfangensis sp. nov., is proposed and the type strain is 10-17T ( = LMG 27195T = NCIMB 14836T = CCUG 62994T). Enterobacter sacchari Zhu et al. 2013 was reclassified as Kosakonia sacchari comb. nov. on the basis of 16S rRNA, rpoB, gyrB, infB and atpD gene sequence analysis and the type strain is strain SP1T( = CGMCC 1.12102T = LMG 26783T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4100-4107 ◽  
Author(s):  
Shih-Yao Lin ◽  
Asif Hameed ◽  
A. B. Arun ◽  
You-Cheng Liu ◽  
Yi-Han Hsu ◽  
...  

An aerobic, Gram-negative, rod-shaped bacterium with polar flagella, strain CC-AFH3T, was isolated from an oil-contaminated site located in Kaohsiung county, Taiwan. Strain CC-AFH3T grew at 20–40 °C, pH 5.0–10.0 and <2 % (w/v) NaCl. 16S rRNA gene sequence analysis indicated that strain CC-AFH3T showed the greatest degree of similarity to Herbaspirillum soli SUEMI10T (96.5 %), H. aurantiacum SUEMI08T (96.3 %), H. canariense SUEMI03T (96.0 %), H. psychrotolerans PB1T (95.4 %) and members of other Herbaspirillum species (94.1–95.2 %), and lower similarity to members of other genera (<94 %). Phylogenetic analyses also positioned the novel strain in the genus Herbaspirillum as an independent lineage. The major fatty acids in strain CC-AFH3T were C10 : 0 3-OH, C12 : 0, C14 : 0 2-OH, C16 : 0, iso-C15 : 0 3-OH, C17 : 0 cyclo, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The major polar lipids of strain CC-AFH3T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The predominant quinone was ubiquinone 8 (Q-8) and the DNA G+C content was 63.4 mol%. On the basis of 16S rRNA gene sequence analysis in combination with physiological and chemotaxonomic data, strain CC-AFH3T represents a novel species in a new genus, for which we propose the name Noviherbaspirillum malthae gen. nov., sp. nov.; the type strain of Noviherbaspirillum malthae is CC-AFH3T ( = BCRC 80516T = JCM 18414T). We also propose the reclassification of Herbaspirillum soli , Herbaspirillum aurantiacum , Herbaspirillum canariense and ‘Herbaspirillum psychrotolerans’ as Noviherbaspirillum soli comb. nov. (type strain SUEMI10T = LMG 26149T = CECT 7840T), Noviherbaspirillum aurantiacum comb. nov. (type strain SUEMI08T = LMG 26150T = CECT 7839T), Noviherbaspirillum canariense comb. nov. (type strain SUEMI03T = LMG 26151T = CECT 7838T) and Noviherbaspirillum psychrotolerans comb. nov. (type strain PB1T = DSM 26001T = LMG 27282T), respectively. An emended description of Herbaspirillum seropedicae is also presented.


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 778-783 ◽  
Author(s):  
Peter Kämpfer ◽  
Leszek Jerzak ◽  
Gottfried Wilharm ◽  
Jan Golke ◽  
Hans-Jürgen Busse ◽  
...  

A cream-coloured, Gram-stain-negative, aerobic, non-motile, rod- to irregular shaped bacterium, strain 119/4T, was isolated from a choana swab of a white stork nestling on sheep blood agar. 16S rRNA gene sequence analysis and subsequent comparisons showed that it was a member of the family Rhodobacteraceae, showing 94.9 % similarity to the type strain of Gemmobacter tilapiae and 94.6 % similarity to that of Gemmobacter nectariphilus , but also similarly low sequence similarity to the type strains of Rhodobacter viridis (94.8 %), Rhodobacter veldkampii (94.6 %) and Paenirhodobacter enshiensis (94.6 %). Reconstruction of phylogenetic trees showed that strain 119/4T clustered close to species of the genus Gemmobacter . The quinone system contained high amounts of ubiquinone Q-10 with traces of Q-8, Q-9 and Q-11, and the fatty acid profile consisted mainly of C18 : 1ω7c, C16 : 1ω7c/iso-C15 : 0 2-OH and C10 : 0 3-OH. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phoshatidylglycerol and phosphatidylcholine. Major polyamines were putrescine and spermidine. On the basis of 16S rRNA gene sequence analysis and chemotaxonomic and physiological data, strain 119/4T represents a novel species of the genus Gemmobacter , for which the name Gemmobacter intermedius sp. nov. is proposed. The type strain is 119/4T ( = CIP 110795T = LMG 28215T = CCM 8510T).


Sign in / Sign up

Export Citation Format

Share Document