Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes

2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2505-2510 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Anne Willems

Gram-negative, rod-shaped bacteria were isolated from root nodules of Lupinus polyphyllus, Lathyrus latifolius and Robinia pseudoacacia. Based on the 16S rRNA gene phylogeny, they were closely related to Bosea species (100–97 % similarity), belonging to the class Alphaproteobacteria , family Bradyrhizobiaceae . The closest relatives of LMG 26383T, LMG 26379T and LMG 26381T were respectively the type strains of Bosea thiooxidans (99.6 %), B. eneae (98.3 %) and B. minatitlanensis (99.0 %). Chemotaxonomic data, including major fatty acid profiles, supported the assignment of our strains to the genus Bosea . Analysis of the concatenated sequences of five housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) and the results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from each other and from the five Bosea species with validly published names. No nodA or nodC genes could be amplified, while nifH PCR gave non-specific products. On the basis of genotypic and phenotypic data, three novel species, Bosea lupini sp. nov. (type strain LMG 26383T  = CCUG 61248T  = R-45681T), Bosea lathyri sp. nov. (type strain LMG 26379T  = CCUG 61247T  = R-46060T) and Bosea robiniae sp. nov. (type strain LMG 26381T  = CCUG 61249T  = R-46070T), are proposed.

Author(s):  
Inhyup Kim ◽  
Geeta Chhetri ◽  
Jiyoun Kim ◽  
Minchung Kang ◽  
Yoonseop So ◽  
...  

Two bacterial strains, designated MJB4T and SJ7T, were isolated from water samples collected from Jeongbang Falls on Jeju Island, Republic of Korea. Phylogenetic analysis of 16S rRNA gene sequences indicated that the two strains belonged to the genera Nocardioides and Hyunsoonleella , owing to their high similarities to Nocardioides jensenii DSM 29641T (97.5 %) and Hyunsoonleella rubra FA042 T (96.3 %), respectively. These values are much lower than the gold standard for bacterial species (98.7 %). The average nucleotide identity values between strains MJB4T, SJ7T and the reference strains, Nocardioides jensenii DSM 29641T, Nocardioides daejeonensis MJ31T and Hyunsoonleella flava T58T were 77.2, 75.9 and 75.4 %, respectively. Strains MJB4T and SJ7T and the type strains of the species involved in system incidence have average nucleotide identity and average amino acid threshold values of 60.1–82.6 % for the species boundary (95–96 %), which confirms that strains MJB4T and SJ7T represent two new species of genus Nocardioides and Hyunsoonleella , respectively. Based on phylogenetic and phenotypic data, strains MJB4T and SJ7T are considered to represent novel species of the genus Nocardioides and Hyunsoonleella , respectively, for which the names Nocardioides donggukensis sp. nov. (type strain MJB4T=KACC 21724T=NBRC 114402T) and Hyunsoonleella aquatilis sp. nov., (type strain SJ7T=KACC 21715T=NBRC 114486T) have been proposed.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4396-4401 ◽  
Author(s):  
Jung-Eun Yang ◽  
Heung-Min Son ◽  
Jung Min Lee ◽  
Heon-Sub Shin ◽  
Sang-Yong Park ◽  
...  

A Gram-reaction-negative, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain, designated THG-45T, was isolated from soil of a ginseng field of Pocheon province in the Republic of Korea and its taxonomic position was investigated by a polyphasic approach. Growth occurred at 4–30 °C, at pH 5.5–9.0 and with 0–2 % (w/v) NaCl on nutrient agar. On the basis of 16S rRNA gene sequence similarity, strain THG-45T was shown to belong to the genus Pedobacter and was related to Pedobacter borealis G-1T (98.8 %), P. alluvionis NWER-II11T (97.9 %), P. agri PB92T (97.9 %), P. terrae DS-57T (97.5 %), P. suwonensis 15-52T (97.4 %), P. sandarakinus DS-27T (97.0 %) and P. soli 15-51T (97.0 %), but DNA relatedness between strain THG-45T and these strains was below 36 %. The G+C content of the genomic DNA was 39 mol%. The only isoprenoid quinone detected in strain THG-45T was menaquinone-7 (MK-7). The predominant fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH, and the major polar lipids were phosphatidylethanolamine and an unidentified aminophosphoglycolipid. Phenotypic data and phylogenetic inference supported the affiliation of strain THG-45T to the genus Pedobacter , and a number of biochemical tests differentiated strain THG-45T from the recognized species of the genus Pedobacter . Therefore, the novel isolate represents a novel species, for which the name Pedobacter ginsenosidimutans sp. nov. is proposed, with THG-45T as the type strain ( = KACC 14530T = JCM 16721T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2782-2786 ◽  
Author(s):  
Kazuko Takada ◽  
Masanori Saito ◽  
Osamu Tsudukibashi ◽  
Takachika Hiroi ◽  
Masatomo Hirasawa

Four Gram-positive, catalase-negative, coccoid isolates that were obtained from donkey oral cavities formed two distinct clonal groups when characterized by phenotypic and phylogenetic studies. From the results of biochemical tests, the organisms were tentatively identified as a streptococcal species. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus . Two of the isolates were related most closely to Streptococcus ursoris with 95.6 % similarity based on the 16S rRNA gene and to Streptococcus ratti with 92.0 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates, however, were related to Streptococcus criceti with 95.0 and 89.0 % similarities based on the 16S rRNA and groEL genes, respectively. From both phylogenetic and phenotypic evidence, the four isolates formed two distinct clonal groups and are suggested to represent novel species of the genus Streptococcus . The names proposed for these organisms are Streptococcus orisasini sp. nov. (type strain NUM 1801T = JCM 17942T = DSM 25193T) and Streptococcus dentasini sp. nov. (type strain NUM 1808T = JCM 17943T = DSM 25137T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3288-3292 ◽  
Author(s):  
Masanori Saito ◽  
Noriko Shinozaki-Kuwahara ◽  
Masatomo Hirasawa ◽  
Kazuko Takada

Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus . Two isolates (NUM 6304T and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306T and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus , for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304T = JCM 19287T = DSM 27382T) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306T = JCM 19288T = DSM 27513T) are proposed.


2020 ◽  
Vol 70 (6) ◽  
pp. 3878-3887 ◽  
Author(s):  
Chun-Zhi Jin ◽  
Xiuli Song ◽  
Yun Ju Sung ◽  
Feng-Jie Jin ◽  
Taihua Li ◽  
...  

A polyphasic taxonomic study was carried out on strains CHu50b-3-2T and CHu40b-3-1 isolated from a 67 cm-long sediment core collected from the Daechung Reservoir at a water depth of 17 m, Daejeon, Republic of Korea. The cells of the strains were Gram-stain-negative, non-spore-forming, non-motile and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of two strains with γ-Proteobacteria, which showed the highest pairwise sequence similarities to Lysobacter hankyongensis KTce-2T (96.5 %), Lysobacter pocheonensis Gsoil193T (96.3 %), Lysobacter ginsengisoli Gsoil 357T (96.1 %), Lysobacter solanacearum T20R-70T (96.1 %), Lysobacter brunescens KCTC 12130T (95.4 %) and Lysobacter capsici YC5194T (95.3 %). The phylogenetic analysis based on 16S rRNA gene sequences showed that the strains formed a clear phylogenetic lineage with the genus Lysobacter . The major fatty acids were identified as summed feature 9 (iso-C17 : 1  ω9c and/or C18 : 1 10-methyl), iso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. The respiratory quinone was identified as ubiquinone Q-8. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The genomic DNA G+C content was determined to be 66.8 mol% (genome) for strain CHu50b-3-2T and 66.4 mol% (HPLC) for strain CHu40b-3-1. Based on the combined genotypic and phenotypic data, we propose that strains CHu50b-3-2T and CHu40b-3-1 represent a novel species of the genus Lysobacter , for which the name Lysobacter profundi sp. nov. is proposed. The type strain is CHu50b-3-2T (=KCTC 72973T=CCTCC AB 2019129T). Besides Lysobacter panaciterrae Gsoil 068T formed a phylogenetic group together with strain Luteimonas aquatica RIB1-20T (EF626688) that is clearly separated from all other known Lysobacter strains. Based on the phylogenetic relationships together with fatty acid compositions, Lysobacter panaciterrae Gsoil 068T should be reclassified as a member of the genus Luteimonas: Luteimonas aquatica comb. nov. (type strain Gsoil 068T=KCTC 12601T=DSM 17927T).


Author(s):  
Masataka Kanamuro ◽  
Yuki Sato-Takabe ◽  
So Muramatsu ◽  
Setsuko Hirose ◽  
Yuki Muramatsu ◽  
...  

A strictly aerobic, bacteriochlorophyll (BChl) a-containing alphaproteobacterium, designated strain K6T, was isolated from seawater around an aquaculture site in the Uwa Sea in Japan. The novel strain grew optimally at 30 °C at pH 7.0–7.5 and in the presence of 2.0 % (w/v) NaCl. The nonmotile and coccoid or rod-shaped cells formed pink-pigmented colonies on agar plates containing organic compounds. Cells showed an in vivo absorption maximum at 870 nm in the near-infrared region, indicating the presence of BChl a in the light-harvesting 1 complex. The new bacterial strain was Gram-stain-negative and oxidase- and catalase-positive. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain K6T was closely related to species in the genus Litoreibacter . The closest phylogenetic relatives of strain K6T were Litoreibacter ponti GJSW-31T (98.56 % sequence similarity), Litoreibacter janthinus KMM 3842T (97.63 %) and Litoreibacter albidus KMM 3851T (96.88 %). The G+C content of the genomic DNA was 58.26 mol%. The average nucleotide identity value of strain K6T with the type strain of L. ponti was 77.16 % (SD 4.79 %). The digital DNA−DNA hybridization value of strain K6T with the type strain of L. ponti was 19.40 %. The respiratory quinone was ubiquinone-10. The major cellular fatty acids were C18 : 1 ω7c, C16 : 0 and 11-methyl C18 : 1 ω7c. The dominant polar lipids were phosphatidylcholine and phosphatidylglycerol. On the basis of the genetic and phenotypic data obtained in the present study, we propose a new species in the genus Litoreibacter : Litoreibacter roseus sp. nov., whose type strain is K6T (=DSM 110109T=NBRC 114114T). Strain K6T represents the first confirmed species that produces BChl a within the genus Litoreibacter .


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2975-2979 ◽  
Author(s):  
Ying-Yi Huo ◽  
Zheng-Yang Li ◽  
Hong You ◽  
Chun-Sheng Wang ◽  
Anton F. Post ◽  
...  

Two Gram-stain-negative, aerobic, moderately halophilic, rod-shaped bacteria (strains Ar-45T and DY470T) were isolated from seawater collected from the Southern Ocean and the Pacific Ocean, respectively. Growth of strain Ar-45T was observed with between 0.5 and 10.0 % (w/v) NaCl (optimally with 0.5–3.0 %) and between pH 5.5 and 9.5. Strain DY470T grew in the presence of 0.5–7.5 % (w/v) NaCl (optimally with 2.0 %) and at pH 5.5–8.5. Chemotaxonomic analysis showed Q-10 as the respiratory quinone for both strains. The major fatty acids (>5 %) of strain Ar-45T were C16 : 0, C19 : 0 cyclo ω8c and C18 : 1ω7c, while those of strain DY470T were C18 : 1ω7c, C16 : 0 and 11-methyl C18 : 1ω7c. The DNA G+C contents of the two strains were 62.0 and 61.8 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains Ar-45T and DY470T were related most closely to the genus Oceanicola , with sequence similarities of 97.4–94.0 and 97.7–94.7 %, respectively. The DNA–DNA hybridization value between strain Ar-45T and Oceanicola marinus LMG 23705T was 22.0 %. Levels of DNA–DNA relatedness between strain DY470T and Oceanicola nitratireducens LMG 24663T and Oceanicola batsensis DSM 15984T were 32.5 and 26.1 %, respectively. Based on phylogenetic, chemotaxonomic and phenotypic data, strains Ar-45T and DY470T are considered to represent two novel species of the genus Oceanicola , for which the names Oceanicola antarcticus (type strain Ar-45T = CGMCC 1.12662T = LMG 27868T) and Oceanicola flagellatus (type strain DY470T = CGMCC 1.12664T = LMG 27871T) are proposed.


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1882-1889 ◽  
Author(s):  
Henk C. den Bakker ◽  
Steven Warchocki ◽  
Emily M. Wright ◽  
Adam F. Allred ◽  
Christina Ahlstrom ◽  
...  

Sampling of agricultural and natural environments in two US states (Colorado and Florida) yielded 18 Listeria-like isolates that could not be assigned to previously described species using traditional methods. Using whole-genome sequencing and traditional phenotypic methods, we identified five novel species, each with a genome-wide average blast nucleotide identity (ANIb) of less than 85 % to currently described species. Phylogenetic analysis based on 16S rRNA gene sequences and amino acid sequences of 31 conserved loci showed the existence of four well-supported clades within the genus Listeria ; (i) a clade representing Listeria monocytogenes , L. marthii , L. innocua , L. welshimeri , L. seeligeri and L. ivanovii , which we refer to as Listeria sensu stricto, (ii) a clade consisting of Listeria fleischmannii and two newly described species, Listeria aquatica sp. nov. (type strain FSL S10-1188T = DSM 26686T = LMG 28120T = BEI NR-42633T) and Listeria floridensis sp. nov. (type strain FSL S10-1187T = DSM 26687T = LMG 28121T = BEI NR-42632T), (iii) a clade consisting of Listeria rocourtiae , L. weihenstephanensis and three novel species, Listeria cornellensis sp. nov. (type strain TTU A1-0210T = FSL F6-0969T = DSM 26689T = LMG 28123T = BEI NR-42630T), Listeria grandensis sp. nov. (type strain TTU A1-0212T = FSL F6-0971T = DSM 26688T = LMG 28122T = BEI NR-42631T) and Listeria riparia sp. nov. (type strain FSL S10-1204T = DSM 26685T = LMG 28119T = BEI NR- 42634T) and (iv) a clade containing Listeria grayi . Genomic and phenotypic data suggest that the novel species are non-pathogenic.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 496-501 ◽  
Author(s):  
Dong-Shan An ◽  
Qing-Mei Liu ◽  
Hyung-Gwan Lee ◽  
Mi-Seon Jung ◽  
Sun-Chan Kim ◽  
...  

Two novel bacteria, designated strains Gsoil 634T and Dae 20T, were isolated in South Korea from soil of a ginseng field and freshwater sediment, respectively and were characterized by a polyphasic approach to clarify their taxonomic positions. Phylogenetic analysis based on 16S rRNA gene sequences indicated that, although they probably represented two distinct species (indicated by a sequence similarity of 96.6 %), both strain Gsoil 634T and strain Dae 20T belonged to the genus Sphingomonas and were most closely related to ‘Sphingomonas humi’ PB323 (97.8 % and 96.7 % sequence similarity, respectively), Sphingomonas kaistensis PB56T (96.8 % and 96.7 %), Sphingomonas astaxanthinifaciens TDMA-17T (96.6 % and 95.4 %) and Sphingomonas jaspsi TDMA-16T (95.6 % and 95.8 %). For both novel strains, the major ubiquinone was Q-10, the major polyamine was homospermidine, the major cellular fatty acids included summed feature 7 (C18 : 1ω7c, C18 : 1ω9t and/or C18 : 1ω12t), C17 : 1ω6c and C16 : 0, and the polar lipids included sphingoglycolipid. These chemotaxonomic data supported the affiliation of both strains to the genus Sphingomonas . However, the DNA–DNA relatedness value between strain Gsoil 634T and ‘Sphingomonas humi’ PB323T was 31 %. Moreover, the results of physiological and biochemical tests allowed the phenotypic differentiation of strains Gsoil 634T and Dae 20T from established members of the genus Sphingomonas . Based on these data, the two isolates represent two novel species in the genus Sphingomonas , for which the names Sphingomonas ginsengisoli sp. nov. (type strain Gsoil 634T = KCTC 12630T = DSM 18094T = LMG 23739T) and Sphingomonas sediminicola sp. nov. (type strain Dae 20T  = KCTC 12629T = DSM 18106T = LMG 23592T) are proposed.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1464-1470 ◽  
Author(s):  
Wei Su ◽  
Zhichao Zhou ◽  
Fan Jiang ◽  
XuLu Chang ◽  
Ying Liu ◽  
...  

A Gram-reaction-negative, motile, non-violet-pigmented, rod-shaped bacterial strain, designated E1T, was isolated from Arctic lake sediment. Growth occurred at 4 °C–28 °C (optimum, 18 °C), at pH 4–11(optimum, 9–10) and in the presence of 0–1 % (w/v) NaCl. The taxonomic position of E1T was analysed using a polyphasic approach. Strain E1T exhibited 16S rRNA gene sequence similarity value of 98.1 % with respect to the type strain of Iodobacter fluviatilis , but no more than 93 % with the type strains of other recognized species. A further DNA–DNA hybridization experiment was conducted, which demonstrated unambiguously that strain E1T was distinct from I. fluviatilis ATCC 33051T (51.3 % relatedness). The DNA G+C content of strain E1T was 52.3 mol%. Chemotaxonomic data [Q-8 as the monospecific respiratory quinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 56.1 %) and C16 : 0 (18.8 %) as the major cellular fatty acids] supported the affiliation of strain E1T to the genus Iodobacter . However, the results of physiological and biochemical tests allowed phenotypic differentiation of strain E1T from I. fluviatilis ATCC 33051T. On the basis of phenotypic and genotypic properties, strain E1T represents a novel species of genus Iodobacter, for which the name Iodobacter limnosediminis sp. nov. is proposed. The type strain is E1T ( = CCTCC AB 2010224T = NRRL B-59456T).


Sign in / Sign up

Export Citation Format

Share Document