Rothia endophytica sp. nov., an actinobacterium isolated from Dysophylla stellata (Lour.) Benth

2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 3964-3969 ◽  
Author(s):  
Zi-Jun Xiong ◽  
Jin-Li Zhang ◽  
Dao-Feng Zhang ◽  
Zhi-Li Zhou ◽  
Min-Jiao Liu ◽  
...  

A novel endophytic actinobacterium, designated strain YIM 67072T, was isolated from healthy roots of Dysophylla stellata (Lour.) Benth. Cells of this aerobic, cream–yellow-coloured strain occurred singly, in pairs or in tetrads, were Gram-stain-positive and ovoid- to spherical-shaped. Strain YIM 67072T grew at 4–45 °C, pH 5.0–10.0 and in the presence of 0–7 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 67072T belonged to the genus Rothia . The isolate contained MK-7 as the major component of the quinone system. The peptidoglycan type was A3α. The polar lipid profile consisted predominantly of diphosphatidylglycerol and glycolipids. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content was 53.2 mol%. However, strain YIM 67072T differed from its closest relatives Rothia nasimurium CCUG 35957T (98.5 % 16S rRNA gene sequence similarity), Rothia amarae JCM 11375T (97.6 %) and Rothia terrae L-143T (97.3 %) in many phenotypic characteristics. Moreover, the levels of DNA–DNA relatedness between the novel isolate and the three above-mentioned type strains were 28.7±1.3 %, 36.5±1.2 %, 46.8±1.5 %, respectively. Based on comparative analysis of physiological and chemotaxonomic data, strain YIM 67072T represents a novel species of the genus Rothia , for which the name Rothia endophytica sp. nov. is proposed. The type strain is YIM 67072T ( = DSM 26247T = JCM 18541T).

2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3341-3345 ◽  
Author(s):  
Jia-Fa Wu ◽  
Jie Li ◽  
Zhi-Qing You ◽  
Si Zhang

A novel Gram-stain-positive actinobacterium, designated strain SCSIO 11529T, was isolated from tissues of the stony coral Galaxea fascicularis, and characterized by using a polyphasic approach. The temperature range for growth was 22–50 °C (optimum 28–45 °C), the pH range for growth was 6.0–8.0 (optimum pH 7.0), and the NaCl concentration range for growth was 0–7 % (w/v) NaCl. The polar lipid profile contained diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and an unknown polar lipid. The predominant menaquinone was MK-9(H4). The major fatty acids (>10 %) were iso-C16 : 0, iso-C17 : 1ω6c, iso-C16 : 1 H and C16 : 1ω7c/iso-C15 : 0 2-OH. The DNA G+C content of strain SCSIO 11529T was 70.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCSIO 11529T belongs to the genus Prauserella , with the closest neighbours being Prauserella marina MS498T (97.0 % 16S rRNA gene sequence similarity), Prauserella rugosa DSM 43194T (96.4 %) and Prauserella flava YIM 90630T (95.9 %). Based on the evidence of the present study, strain SCSIO 11529T is considered to represent a novel species of the genus Prauserella , for which the name Prauserella coralliicola sp. nov. is proposed. The type strain is SCSIO 11529T ( = DSM 45821T = NBRC 109418T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1207-1212 ◽  
Author(s):  
Hong-Fei Wang ◽  
Yong-Guang Zhang ◽  
Ji-Yue Chen ◽  
Jian-Wei Guo ◽  
Li Li ◽  
...  

A novel endophytic actinobacterium, designated EGI 6500707T, was isolated from the surface-sterilized root of a halophyte Anabasis elatior (C. A. Mey.) Schischk collected from Urumqi, Xinjiang province, north-west China, and characterized using a polyphasic approach. Cells were Gram-stain-positive, non-motile, short rods and produced white colonies. Growth occurred at 10–45 °C (optimum 25–30 °C), at pH 5–10 (optimum pH 8) and in presence of 0–4 % (w/v) NaCl (optimum 0–3 %). The predominant menaquinone was MK-9. The diagnostic phospholipids were diphosphatidylglycerol and phosphatidylglycerol. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content of strain EGI 6500707T was 69.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain EGI 6500707T should be placed in the genus Frigoribacterium (family Microbacteriaceae , phylum Actinobacteria ), and that the novel strain exhibited the highest 16S rRNA gene sequence similarity to Frigoribacterium faeni JCM 11265T (99.1 %) and Frigoribacterium mesophilum MSL-08T (96.5 %). DNA–DNA relatedness between strain EGI 6500707T and F. faeni JCM 11265T was 47.2 %. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain EGI 6500707T represents a novel species of the genus Frigoribacterium , for which the name Frigoribacterium endophyticum sp. nov. is proposed. The type strain is EGI 6500707T ( = JCM 30093T = KCTC 29493T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1552-1558 ◽  
Author(s):  
Soo-Jin Kim ◽  
Ji-Young Moon ◽  
Hang-Yeon Weon ◽  
Seung-Beom Hong ◽  
Soon-Ja Seok ◽  
...  

A Gram-stain-negative bacterium, strain 5410S-62T, was isolated from an air sample collected in Suwon, Republic of Korea. It was aerobic, motile, mesophilic and formed rod-shaped cells. Colonies on R2A agar were convex, circular and pale orange with entire margins. Growth occurred at pH 5–9 (optimally at pH 7) and at 10–40 °C (optimally at 28 °C). It did not grow in the presence of 1 % NaCl. Comparative analyses of 16S rRNA gene sequences demonstrated that the novel strain was closely related to members of the genus Noviherbaspirillum . Strain 5410S-62T showed the highest sequence similarity (98.2 %) to Glaciimonas singularis A2-57T. It also showed high 16S rRNA gene sequence similarity (98.1–95.6 %) to members of the genus Noviherbaspirillum (98.1 % to Noviherbaspirillum aurantiacum SUEMI08T, 97.8 % to Noviherbaspirillum soli SUEMI10T and Noviherbaspirillum canariense SUEMI03T, 97.6 % to Noviherbaspirillum psychrotolerans PB1T and 95.6 % to Noviherbaspirillum malthae CC-AFH3T). The strain contained summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) as major fatty acids, Q-8 as the only ubiquinone and large amounts of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. Strain 5410S-62T revealed less than 70 % DNA–DNA relatedness with the type strains of closely related species of the genera Noviherbaspirillum and Herbaspirillum and Glaciimonas singularis . Based on the physiological, biochemical and chemotaxonomic data obtained in this study, it is proposed that strain 5410S-62T represents a novel species, Noviherbaspirillum suwonense sp. nov., with 5410S-62T ( = KACC 16657T =  NBRC 108944T) as the type strain.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4562-4567 ◽  
Author(s):  
Xiao-Mei Zhang ◽  
Jie He ◽  
Dao-Feng Zhang ◽  
Wei Chen ◽  
Zhao Jiang ◽  
...  

A novel Gram-stain-positive bacterium, designated strain YIM M11385T, was isolated from a marine sediment sample collected from the South Bay, Little Andaman Island, India with a salinity of 35 p.p.m., pH 8.5. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM M11385T belongs to the genus Marininema , supported by a bootstrap value of 100 %. The taxonomic position of this organism was further established by using a polyphasic approach. Strain YIM M11385T grew optimally at 28 °C, pH 7.0 and in the presence of 0–5 % (w/v) NaCl. The 16S rRNA gene sequence similarity between strain YIM M11385T and Marininema mesophilum SCSIO 10219T was 98.3 %. Strain YIM M11385T exhibited a quinone system with only MK-7, the polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major components, and the major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The level of DNA–DNA relatedness between strain YIM M11385T and M. mesophilum SCSIO 10219T was 59.36 %. On the basis of genotypic and phenotypic data, it is apparent that strain YIM M11385T represents a novel species of the genus Marininema , for which the name Marininema halotolerans sp. nov. is proposed. The type strain is YIM M11385T ( = CCTCC AB 2012052T = DSM 45789T). In addition, we propose that the description of the genus Marininema should be further emended based on the results of the present study.


2020 ◽  
Vol 70 (5) ◽  
pp. 3440-3448 ◽  
Author(s):  
Wen-Ming Chen ◽  
Tzu-Ying Chen ◽  
Che-Chia Yang ◽  
Shih-Yi Sheu

Bacterial strain TWA-58T, isolated from irrigation water in Taiwan, was characterized using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain TWA-58T formed a phylogenetic lineage in the genus Oleiharenicola of the family Opitutaceae . Strain TWA-58T was most closely related to Oleiharenicola alkalitolerans NVTT with a 96.7 % 16S rRNA gene sequence similarity. Strain TWA-58T showed 75.2 % average nucleotide identity, 70.9 % average amino acid identity and 21.0 % digital DNA–DNA hybridization identity with O. alkalitolerans NVTT. Cells were Gram-stain-negative, aerobic, motile, coccoid-shaped and formed transparent colonies. Optimal growth occurred at 25 °C, pH 6, and 0 % NaCl. The major fatty acids of strain TWA-58T were iso-C15 : 0 and anteiso-C15 : 0. The predominant hydroxy fatty acid was iso-C13 : 0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified aminophospholipids. The major isoprenoid quinone was MK-7. Genomic DNA G+C content of strain TWA-58T was 65.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain TWA-58T should be classified in a novel species of the genus Oleiharenicola , for which the name Oleiharenicola lentus sp. nov. is proposed. The type strain is TWA-58T (=BCRC 81161T=LMG 31019T=KCTC 62872T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2084-2089 ◽  
Author(s):  
De-Chao Zhang ◽  
Hans-Jürgen Busse ◽  
Cornelia Wieser ◽  
Hong-Can Liu ◽  
Yu-Guang Zhou ◽  
...  

A Gram-negative, facultatively anaerobic, psychrophilic, motile rod, designated BZ59T, was isolated from hydrocarbon-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BZ59T belonged to the genus Candidimonas and had highest 16S rRNA gene sequence similarity with Candidimonas nitroreducens SC-089T (97.7 %) and Candidimonas humi SC-092T (97.6 %). The ubiquinone was Q-8 and the major fatty acids were C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipid profile contained the major compounds phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and diphosphatidylglycerol. The major polyamines were putrescine and spermidine; a minor amount of 2-hydroxyputrescine was present. The DNA G+C content of strain BZ59T was 61.6 mol%. Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that strain BZ59T represents a novel species of the genus Candidimonas , for which the name Candidimonas bauzanensis sp. nov. is proposed. The type strain is BZ59T ( = DSM 22805T = LMG 26046T = CGMCC 1.10190T). The description of the genus Candidimonas is emended.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2334-2337 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Jae-Hyung Ahn ◽  
Seung-Beom Hong ◽  
Soon-Ja Seok ◽  
...  

An aerobic, Gram-stain-negative, motile, mesophilic bacterium, designated strain 7515T-07T, was isolated from an air sample in the Taean region, Republic of Korea. The strain grew at 4–40 °C (optimum, 30 °C) and pH 5.0–9.0 (optimum, pH 7.0). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 7515T-07T was related to members of the genus Roseomonas and had highest 16S rRNA gene sequence similarity with Roseomonas ludipueritiae 170/96T (96.7 %). 16S RNA gene sequence similarity between strain 7515T-07T and Roseomonas gilardii ATCC 49956T (the type species of the genus Roseomonas ) was 93.4 %. Strain 7515T-07T contained Q-10 as the ubiquinone and C18 : 1ω7c and C19 : 0 cyclo ω8c as the dominant fatty acids (>10 %). The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified aminolipids. The DNA G+C content was 73.0 mol%. Combined data from phenotypic, phylogenetic and chemotaxonomic studies demonstrated that strain 7515T-07T is a representative of a novel species of the genus Roseomonas , for which the name Roseomonas aerophila sp. nov. is proposed. The type strain is 7515T-07T ( = KACC 16529T = NBRC 108923T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 260-265 ◽  
Author(s):  
Qi Wang ◽  
Cheng Cheng ◽  
Lin-Yan He ◽  
Zhi Huang ◽  
Xia-Fang Sheng

A Gram-stain-negative, rod-shaped bacterial strain, JN53T, was isolated from the surfaces of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Strain JN53T grew optimally at 30 °C, pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JN53T belonged to the genus Chitinophaga in the family Chitinophagaceae . It was most closely related to Chitinophaga terrae KP01T (97.3 % 16S rRNA gene sequence similarity), Chitinophaga eiseniae YC6729T (96.3 %). Strain JN53T contained MK-7 as the major menaquinone and homospermidine as the major polyamine. The main fatty acids of strain JN53T were iso-C15 : 0, C16 : 1ω5c, C16 : 1ω7c and/or C16 : 1ω6c (summed feature 3), iso-C17 : 0 3-OH, C16 : 0, iso-C15 : 0 3-OH and C16 : 0 3-OH. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids and unknown lipids. The total DNA G+C content of strain JN53T was 49.7 mol%. The low level of DNA–DNA relatedness to other species of the genus Chitinophaga and the many phenotypic properties that distinguished strain JN53T from recognized species of this genus demonstrated that isolate JN53T should be classified as representing a novel species of the genus Chitinophaga , for which the name Chitinophaga jiangningensis sp. nov. is proposed. The type strain is JN53T ( = CCTCC AB 2013166T = JCM 19354T).


Sign in / Sign up

Export Citation Format

Share Document