scholarly journals Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil

2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1703-1711 ◽  
Author(s):  
Nevzat Sahin ◽  
Aysel Veyisoglu ◽  
Demet Tatar ◽  
Cathrin Spröer ◽  
Demet Cetin ◽  
...  

The taxonomic positions of four novel actinomycetes isolated from soil samples, designated KT2142T, PM2084T, K236T and A4038T, were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Pseudonocardia . Whole-cell hydrolysates of the four strains contained meso-diaminopimelic acid and arabinose and galactose as the diagnostic sugars (cell-wall type IV). Their predominant menaquinone was found to be MK-8(H4). The major fatty acid was iso-C16 : 0. 16S rRNA gene sequence data supported the classification of the isolates in the genus Pseudonocardia and showed that they formed four distinct branches within the genus. DNA–DNA relatedness studies between the isolates and their phylogenetic neighbours showed that they belonged to distinct genomic species. The four isolates were readily distinguished from one another and from the type strains of species classified in the genus Pseudonocardia based on a combination of phenotypic and genotypic properties. In conclusion, it is proposed that the four isolates be classified in four novel species of the genus Pseudonocardia , for which the names Pseudonocardia cypriaca sp. nov. (type strain KT2142T = KCTC 29067T = DSM 45511T = NRRL B-24882T), Pseudonocardia hierapolitana sp. nov. (type strain PM2084T = KCTC 29068T = DSM 45671T = NRRL B-24879T), Pseudonocardia salamisensis sp. nov. (type strain K236T = KCTC 29100T = DSM 45717T) and Pseudonocardia kujensis sp. nov. (type strain A4038T = KCTC 29062T = DSM 45670T = NRRL B-24890T) are proposed.

2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1245-1251 ◽  
Author(s):  
Tiago Domingues Zucchi ◽  
Geok Yuan Annie Tan ◽  
Avinash Naga Venkata Bonda ◽  
Sarah Frank ◽  
Jenileima Devi Kshetrimayum ◽  
...  

The taxonomic positions of three thermophilic actinomycetes isolated from arid soil samples were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Amycolatopsis . 16S rRNA gene sequence data supported the classification of the isolates in the genus Amycolatopsis and showed that they formed distinct branches in the Amycolatopsis methanolica subclade. DNA–DNA relatedness studies between the isolates and their phylogenetic neighbours showed that they belonged to distinct genomic species. The three isolates were readily distinguished from one another and from the type strains of species classified in the A. methanolica subclade based on a combination of phenotypic properties and by genomic fingerprinting. Consequently, it is proposed that the three isolates be classified in the genus Amycolatopsis as representatives of Amycolatopsis granulosa sp. nov. (type strain GY307T = NCIMB 14709T = NRRL B-24844T), Amycolatopsis ruanii sp. nov. (type strain NMG112T = NCIMB 14711T = NRRL B-24848T) and Amycolatopsis thermalba sp. nov. (type strain SF45T = NCIMB 14705T = NRRL B-24845T).


Author(s):  
Die Zhang ◽  
Zhi-you Su ◽  
Lei Li ◽  
Wei-zhuo Tang

Two novel Rhodococcus strains, LHW50502T and LHW51113T, were isolated from marine sponges obtained on Xisha Island, Hainan Province, PR China. Rods and cocci, typical characteristics of the genus Rhodococcus , were observed. The strains contained meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall hydrolysates and galactose, arabinose, ribose and glucose as the whole-cell sugars. The major fatty acid identified was C16 : 0. MK-8(H4) was the predominat menaquinone of both strains. Stains LHW50502T and LHW51113T had almost identical (99.6 %) 16S rRNA gene sequences but shared relatively low similarities with previously characterized Rhodococcus species (well below 98.7 %). The results of phylogenetic analysis supported their closest relationship; however, the average nucleotide identity and digital DNA–DNA hybridization values between these two strains indicated that they belonged to distinct species. Taken together, the results of this study indicate that strains LHW50502T and LHW51113T represent two novel species of the genus Rhodococcus , for which the names Rhodococcus spongiicola sp. nov. (type strain LHW50502T=DSM 106291T=CCTCC AA 2018033T) and Rhodococcus xishaensis sp. nov. (type strain LHW51113T=DSM 106204T=CCTCC AA 2018034T) are proposed.


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3220-3224 ◽  
Author(s):  
Tiarin Ferreira ◽  
Carol A. van Reenen ◽  
Akihito Endo ◽  
Cathrin Spröer ◽  
Antoinette P. Malan ◽  
...  

Bacterial strain SF87T, and additional strains SF80, SF362 and 106-C, isolated from the nematode Steinernema khoisanae, are non-bioluminescent Gram-reaction-negative bacteria that share many of the carbohydrate fermentation reactions recorded for the type strains of recognized Xenorhabdus species. Based on 16S rRNA gene sequence data, strain SF87T is shown to be closely related (98 % similarity) to Xenorhabdus hominickii DSM 17903T. Nucleotide sequences of strain SF87 obtained from the recA, dnaN, gltX, gyrB and infB genes showed 96–97 % similarity with Xenorhabdus miraniensis DSM 17902T . However, strain SF87 shares only 52.7 % DNA–DNA relatedness with the type strain of X. miraniensis , confirming that it belongs to a different species. Strains SF87T, SF80, SF362 and 106-C are phenotypically similar to X. miraniensis and X. beddingii , except that they do not produce acid from aesculin. These strains are thus considered to represent a novel species of the genus Xenorhabdus , for which the name Xenorhabdus khoisanae sp. nov. is proposed. The type strain is SF87T ( = DSM 25463T = ATCC BAA-2406T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3126-3133 ◽  
Author(s):  
Demet Tatar ◽  
Kiymet Guven ◽  
Cathrin Spröer ◽  
Hans-Peter Klenk ◽  
Nevzat Sahin

The taxonomic positions of two novel actinomycetes, designated strains BNT558T and SM3501T, were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Streptomyces . The whole-cell hydrolysates of the two strains contained ll-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-9(H8) for strain BNT558T and MK-9(H8) and MK-9(H6) for strain SM3501T. Major fatty acids of the strains were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipid profile of strain BNT558T contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, one unidentified glycolipid and one unidentified aminophospholipid, while that of strain SM3501T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, three unidentified atypical aminolipids, one unidentified aminolipid and two unidentified glycolipids. The G+C contents of the genomic DNA were 70.2 and 69.6 mol% for strains BNT558T and SM3501T, respectively. 16S rRNA gene sequence data supported the classification of the isolates in the genus Streptomyces and showed that they formed two distinct branches within the genus. Based on almost-complete 16S rRNA gene sequences, strain BNT558T was related most closely to Streptomyces albiaxialis NRRL B-24327T and strain SM3501T was related most closely to Streptomyces cacaoi subsp. cacaoi NBRC 12748T. DNA–DNA relatedness between each of the isolates and its closest phylogenetic neighbours showed that they belonged to distinct species. The two isolates were readily distinguished from one another and from the type strains of the other species classified in the genus Streptomyces based on a combination of phenotypic and genotypic properties. Based on the genotypic and phenotypic evidence, strains BNT558T and SM3501T belong to two novel species in the genus Streptomyces , for which the names Streptomyces iconiensis sp. nov. (type strain BNT558T = KCTC 29198T = DSM 42109T) and Streptomyces smyrnaeus sp. nov. (type strain SM3501T = KCTC 29214T = DSM 42105T) are proposed, respectively.


2020 ◽  
Vol 70 (5) ◽  
pp. 3406-3412 ◽  
Author(s):  
Jiuyan Xie ◽  
Kun Cheng ◽  
Dong Zhao ◽  
Guanrong Yang ◽  
Zongwei Qiao ◽  
...  

A Gram-stain-positive, strictly aerobic and rod-shaped bacterium, designated as 3 H-10T, was isolated from a yellow water sample collected from the manufacturing process of strong flavor Chinese baijiu in Yibin region of Sichuan province (PR China). Oval endospores were formed at the subtermini of cells with swollen sporangia. The isolate was able to grow at temperatures of 20–45 °C (optimum growth at 37 °C), at pH 6.0–10.0 (optimum growth at pH 8.0) and in the presence of 0–2 % (w/v) NaCl (optimum growth with 0 % NaCl). Ribose was the major cell-wall sugar, and meso-diaminopimelic acid (meso-DAP) was the diagnostic amino acid. The main polar lipids of 3 H-10T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). MK-7 was predominant menaquinone and iso-C15 : 0 (60.7 %) was the major fatty acid. Comparisons of 16S rRNA gene sequence indicated that 3 H-10T was most closely related to Bacillus mesophilus SA4T (96.30 %), Bacillus ginsengihumi Gsoil 114T (96.27 %) and Bacillus shackletonii LMG 18435T (96.27 %). The average nucleotide identity (ANI) values between strain 3 H-10T and the three type strains mentioned above were 69.56, 70.19 and 70.67 %, respectively. The genomic DNA G+C content was 35.4 mol%. On the basis of its phenotypic, chemotaxonomic and phylogenetic properties, strain 3 H-10T represents a novel species of the genus Bacillus , for which the name Bacillus aquiflavi sp. nov. is proposed. The type strain is Bacillus aquiflavi 3 H-10T (=CICC 24755T=JCM 33703T).


Author(s):  
Hongxiang Liu ◽  
Lijing Lu ◽  
Sijin Wang ◽  
Meng Yu ◽  
Xiaoyun Cao ◽  
...  

A Gram-stain-positive, facultatively anaerobic, non-motile, endospore-forming and rod-shaped bacterium, occurring singly or in pairs, designated TB2019T, was isolated from environmental monitoring samples of corridor air collected at the Tianjin Institute for Drug Control, Tianjin Province (PR China). The isolate was able to grow at 15–40 °C (optimum growth at 37 °C), pH 6.0–8.0 (pH 7.0) and in the presence of 0–2% (w/v) NaCl (0% NaCl). Comparison of 16S rRNA gene sequences indicated that TB2019T was most closely related to Paenibacillus typhae CGMCC 1.11012T (98.63%), Paenibacillus albidus Q4-3T (98.19%), Paenibacillus borealis DSM 13188T (97.55%), Paenibacillus helianthi P26ET (97.33%) and Paenibacillus odorifer DSM 15391T (97.19%). The digital DNA–DNA hybridization and the average nucleotide identity values between TB2019T and the five type strains mentioned above ranged from 20.7 to 25.0% and 75.2 to 81.3%, respectively, and the genomic DNA G+C content was 49.52 mol%. The diagnostic cell-wall sugar was ribose, and the diagnostic amino acid was meso-diaminopimelic acid. The polar lipids of TB2019T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminophospholipids and one unidentified phospholipid. MK-7 was the predominant menaquinone, and anteiso-C15:0 (30.6%) was the major fatty acid. Based on the polyphasic taxonomic data, strain TB2019T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus tianjinensis sp. nov. is proposed. The type strain is TB2019T (=CICC 25065T=JCM 34610T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 316-324 ◽  
Author(s):  
Jongsik Chun ◽  
Fred A. Rainey

The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA–DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12 000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11 000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.


Author(s):  
Fenfa Li ◽  
Qingyi Xie ◽  
Shuangqing Zhou ◽  
Fandong Kong ◽  
Yun Xu ◽  
...  

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis . The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2537-2553 ◽  
Author(s):  
Ram Hari Dahal ◽  
Dhiraj Kumar Chaudhary ◽  
Dong-Uk Kim ◽  
Jaisoo Kim

Fifteen isolates of the genus Pedobacter were obtained from Arctic soil samples. All isolates were Gram-stain-negative and rod-shaped. Cells were strictly aerobic, psychrotolerant and grew optimally at 15–20 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all the isolated strains formed a lineage within the family Sphingobacteriaceae and clustered as members of the genus Pedobacter . The sole respiratory quinone was MK-7 and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were summed feature 3 (iso-C15 : 02-OH/C16 : 1ω7c/ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH. The DNA G+C content of the novel strains was 33.9–41.8 mol%. In addition, the average nucleotide identity and in silico DNA–DNA hybridization relatedness values between the novel type strains and phylogenetically related type strains were below the threshold values used for species delineation. Based on genomic, chemotaxonomic, phenotypic, phylogenetic and phylogenomic analyses, the isolated strains represent novel species in the genus Pedobacter , for which the names Pedobacter cryotolerans sp. nov. (type strain AR-2-6T=KEMB 9005-717T=KACC 19998T=NBRC 113826T), Pedobacter cryophilus sp. nov. (type strain AR-3-17T=KEMB 9005-718T=KACC 19999T=NBRC 113827T), Pedobacter frigiditerrae sp. nov. (type strain RP-1-13T=KEMB 9005-720T=KACC 21147T=NBRC 113829T), Pedobacter psychroterrae sp. nov. (type strain RP-1-14T=KEMB 9005-721T=KACC 21148T=NBRC 113830T), Pedobacter hiemivivus sp. nov. (type strain RP-3-8T=KEMB 9005-724T=KACC 21152T=NBRC 113833T), Pedobacter frigidisoli sp. nov. (type strain RP-3-11T=KEMB 9005-725T=KACC 21153T=NBRC 113927T), Pedobacter frigoris sp. nov. (type strain RP-3-15T=KEMB 9005-726T=KACC 21154T=NBRC 113834T), Pedobacter psychrodurus sp. nov. (type strain RP-3-21T=KEMB 9005-728T=KACC 21156T=NBRC 113835T) and Pedobacter polaris sp. nov. (type strain RP-3-22T=KEMB 9005-729T=KACC 21157T=NBRC 113836T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document