scholarly journals Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov.

2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3087-3103 ◽  
Author(s):  
Irda Safni ◽  
Ilse Cleenwerck ◽  
Paul De Vos ◽  
Mark Fegan ◽  
Lindsay Sly ◽  
...  

The Ralstonia solanacearum species complex has long been recognized as a group of phenotypically diverse strains that can be subdivided into four phylotypes. Using a polyphasic taxonomic approach on an extensive set of strains, this study provides evidence for a taxonomic and nomenclatural revision of members of this complex. Data obtained from phylogenetic analysis of 16S-23S rRNA ITS gene sequences, 16S–23S rRNA intergenic spacer (ITS) region sequences and partial endoglucanase (egl) gene sequences and DNA–DNA hybridizations demonstrate that the R. solanacearum species complex comprises three genospecies. One of these includes the type strain of Ralstonia solanacearum and consists of strains of R. solanacearum phylotype II only. The second genospecies includes the type strain of Ralstonia syzygii and contains only phylotype IV strains. This genospecies is subdivided into three distinct groups, namely R. syzygii , the causal agent of Sumatra disease on clove trees in Indonesia, R. solanacearum phylotype IV strains isolated from different host plants mostly from Indonesia, and strains of the blood disease bacterium (BDB), the causal agent of the banana blood disease, a bacterial wilt disease in Indonesia that affects bananas and plantains. The last genospecies is composed of R. solanacearum strains that belong to phylotypes I and III. As these genospecies are also supported by phenotypic data that allow the differentiation of the three genospecies, the following taxonomic proposals are made: emendation of the descriptions of Ralstonia solanacearum and Ralstonia syzygii and descriptions of Ralstonia syzygii subsp. nov. (type strain R 001T = LMG 10661T = DSM 7385T) for the current R. syzygii strains, Ralstonia syzygii subsp. indonesiensis subsp. nov. (type strain UQRS 464T = LMG 27703T = DSM 27478T) for the current R. solanacearum phylotype IV strains, Ralstonia syzygii subsp. celebesensis subsp. nov. (type strain UQRS 627T = LMG 27706T = DSM 27477T) for the BDB strains and Ralstonia pseudosolanacearum sp. nov. (type strain UQRS 461T = LMG 9673T = NCPPB 1029T) for the strains of R. solanacearum phylotypes I and III.

2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1323-1328 ◽  
Author(s):  
William J. Wolfgang ◽  
Teresa V. Passaretti ◽  
Reashma Jose ◽  
Jocelyn Cole ◽  
An Coorevits ◽  
...  

A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica . Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria . The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria . The name Neisseria oralis sp. nov. (type strain 6332T  = DSM 25276T  = LMG 26725T) is proposed.


2020 ◽  
Vol 70 (4) ◽  
pp. 2369-2381 ◽  
Author(s):  
Dmitriy V. Volokhov ◽  
Dénes Grózner ◽  
Miklós Gyuranecz ◽  
Naola Ferguson-Noel ◽  
Yamei Gao ◽  
...  

In 1983, Mycoplasma sp. strain 1220 was isolated in Hungary from the phallus lymph of a gander with phallus inflammation. Between 1983 and 2017, Mycoplasma sp. 1220 was also identified and isolated from the respiratory tract, liver, ovary, testis, peritoneum and cloaca of diseased geese in several countries. Seventeen studied strains produced acid from glucose and fructose but did not hydrolyse arginine or urea, and all grew under aerobic, microaerophilic and anaerobic conditions at 35 to 37 ˚C in either SP4 or pleuropneumonia-like organism medium supplemented with glucose and serum. Colonies on agar showed a typical fried-egg appearance and transmission electron microscopy revealed a typical mycoplasma cellular morphology. Molecular characterization included analysis of the following genetic loci: 16S rRNA, 23S rRNA, 16S–23S rRNA ITS, rpoB, rpoC, rpoD, uvrA, parC, topA, dnaE, fusA and pyk. The genome was sequenced for type strain 1220T. The 16S rRNA gene sequences of studied strains of Mycoplasma sp. 1220 shared 99.02–99.19 % nucleotide similarity with M. anatis strains but demonstrated ≤95.00–96.70 % nucleotide similarity to the 16S rRNA genes of other species of the genus Mycoplasma . Phylogenetic, average nucleotide and amino acid identity analyses revealed that the novel species was most closely related to Mycoplasma anatis . Based on the genetic data, we propose a novel species of the genus Mycoplasma , for which the name Mycoplasma anserisalpingitidis sp. nov. is proposed with the type strain 1220T (=ATCC BAA-2147T=NCTC 13513T=DSM 23982T). The G+C content is 26.70 mol%, genome size is 959110 bp.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1831-1837 ◽  
Author(s):  
Yao Yao ◽  
Xin Hua Sui ◽  
Xiao Xia Zhang ◽  
En Tao Wang ◽  
Wen Xn Chen

Six slow-growing rhizobial strains isolated from effective nodules of Erythrophleum fordii were classified into the genus Bradyrhizobium based on their 16S rRNA gene sequences. The results of multilocus sequence analysis of recA, glnII and gyrB genes and 16S–23S rRNA intergenic spacer (IGS) sequence phylogeny indicated that the six strains belonged to two novel species, represented by CCBAU 53325T and CCBAU 51502T, which were consistent with the results of DNA–DNA hybridization; CCBAU 53325T had 17.65–25.59 % relatedness and CCBAU 51502T had 22.69–44.58 % relatedness with five closely related type strains, Bradyrhizobium elkanii USDA 76T, B. pachyrhizi LMG 24246T, B. lablabi CCBAU 23086T, B. jicamae LMG 24556T and B. japonicum USDA 6T. In addition, analysis of phenotypic characteristics and fatty acid profiles also distinguished the test strains from defined species of Bradyrhizobium . Two novel species, Bradyrhizobium erythrophlei sp. nov., represented by the type strain CCBAU 53325T ( = HAMBI 3614T = CGMCC 1.13002T = LMG 28425T), and Bradyrhizobium ferriligni sp. nov., represented by the type strain CCBAU 51502T ( = HAMBI 3613T = CGMCC 1.13001T), are proposed to accommodate the strains.


Author(s):  
Jia-Hong Wu ◽  
Ya-Xiu You ◽  
Chiu-Chung Young ◽  
Soon-Wo Kwon ◽  
Wen-Ming Chen

This study presents taxonomic descriptions of strains CYK-4T and TWA-26T isolated from freshwater habitats in Taiwan. Both strains were Gram-stain-negative, strictly aerobic, motile by gliding and rod-shaped. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that both strains belonged to the genus Flavobacterium . Analysis of 16S rRNA gene sequences showed that strains CYK-4T and TWA-26T shared 92.7 % sequence similarity and were most closely related to Flavobacterium ovatum W201ET (95.6 %) and Flavobacterium aquaticum JC164T (96.7 %), respectively. Both strains shared common chemotaxonomic characteristics comprising MK-6 as the main isoprenoid quinone, iso-C15 : 0 and iso-C15 : 1 G as the predominant fatty acids, phosphatidylethanolamine as the principal polar lipid, and homospermidine as the major polyamine. The DNA G+C contents of strains CYK-4T and TWA-26T were 41.5 and 31.8 mol%, respectively. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95–96, 90 and 70 %, respectively, used for species demarcation. On the basis of phenotypic and genotypic properties and phylogenetic inference, both strains should be classified as novel species within the genus Flavobacterium , for which the names Flavobacterium lotistagni sp. nov. (type strain CYK-4T=BCRC 81192T=LMG 31330T) and Flavobacterium celericrescens sp. nov. (type strain TWA-26T=BCRC 81200T=LMG 31333T) are proposed.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 90-94 ◽  
Author(s):  
P. García-Fraile ◽  
M. Chudíčková ◽  
O. Benada ◽  
J. Pikula ◽  
M. Kolařík

During the study of bacteria associated with bats affected by white-nose syndrome hibernating in caves in the Czech Republic, we isolated two facultatively anaerobic, Gram-stain-negative bacteria, designated strains 12T and 52T. Strains 12T and 52T were motile, rod-like bacteria (0.5–0.6 µm in diameter; 1–1.3 µm long), with optimal growth at 20–35 °C and pH 6–8. On the basis of the almost complete sequence of their 16S rRNA genes they should be classified within the genus Serratia ; the closest relatives to strains 12T and 52T were Serratia quinivorans DSM 4597T (99.5 % similarity in 16S rRNA gene sequences) and Serratia ficaria DSM 4569T (99.5 % similarity in 16S rRNA gene sequences), respectively. DNA–DNA relatedness between strain 12T and S. quinivorans DSM 4597T was only 37.1 % and between strain 52T and S. ficaria DSM 4569T was only 56.2 %. Both values are far below the 70 % threshold value for species delineation. In view of these data, we propose the inclusion of the two isolates in the genus Serratia as representatives of Serratia myotis sp. nov. (type strain 12T = CECT 8594T = DSM 28726T) and Serratia vespertilionis sp. nov. (type strain 52T = CECT 8595T = DSM 28727T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 1022-1030 ◽  
Author(s):  
Lei Zhang ◽  
Yuanyuan Pan ◽  
Kaibiao Wang ◽  
Xiaoxia Zhang ◽  
Cheng Zhang ◽  
...  

Strain NEAU-ST5-21T was isolated from saline and alkaline soils in Zhaodong City, Heilongjiang Province, China. It was aerobic, Gram-stain-negative, rod-shaped and motile with a polar flagellum. It produced yellow–orange colonies with a smooth surface, and grew in the presence of 0–5 % (w/v) NaCl (optimum 0 %, w/v), at temperatures of 20–40 °C (optimum 28 °C) and at pH 7–11 (optimum pH 7). Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences indicated that strain NEAU-ST5-21T belongs to the genus Pseudomonas in the class Gammaproteobacteria . The most closely related species is Pseudomonas xanthomarina , whose type strain (KMM 1447T) showed gene sequence similarities of 99.0 % for 16S rRNA, 81.8 % for gyrB and 85.0 % for rpoD with strain NEAU-ST5-21T. DNA–DNA hybridization values between strain NEAU-ST5-21T and P. xanthomarina DSM 18231T, Pseudomonas kunmingensis CGMCC 1.12273T, Pseudomonas stutzeri DSM 5190T, Pseudomonas oleovorans subsp. lubricantis DSM 21016T, Pseudomomas chengduensis CGMCC 2318T, Pseudomonas alcaliphila DSM 17744T and Pseudomonas toyotomiensis DSM 26169T were 52±0 % to 25±2 %. The DNA G+C content of strain NEAU-ST5-21T was 65 mol%. The major fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 1ω7c and/or C16 : 1ω6c and C16 : 0, the predominant respiratory quinone was ubiquinone 9, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid, phosphatidylglycerol, one unknown aminolipid, one unknown lipid and a glycolipid. The proposed name is Pseudomonas zhaodongensis sp. nov., NEAU-ST5-21T ( = ACCC 06362T = DSM 27559T) being the type strain.


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4087-4093 ◽  
Author(s):  
Sarah N. Buss ◽  
Jocelyn A. Cole ◽  
George E. Hannett ◽  
Elizabeth J. Nazarian ◽  
Leah Nazarian ◽  
...  

A Gram-staining-positive, endospore-forming rod was isolated independently from clinical specimens in New York State, USA, once in 2009 and twice in 2011. The three isolates had identical 16S rRNA gene sequences and, based on their 16S rRNA gene sequence, are most closely related to the type strains of Laceyella sediminis and L. sacchari (94.6 % similarity). The partial 23S rRNA gene sequences of the three strains were also 100 % identical. Maximum-likelihood phylogenetic analysis suggests that the new isolates belong to the family Thermoactinomycetaceae . Additional biochemical and phenotypic characteristics of the strains support the family designation and suggest that the three isolates represent a single species. In each of the strains, the predominant menaquinone is MK-7, the diagnostic diamino acid is meso-diaminopimelic acid and the major cellular fatty acids are iso-C15 : 0, anteiso-C15 : 0 and iso-C13 : 0. The polar lipids are phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids, four unknown aminophospholipids and an unknown lipid. It is proposed that the novel isolates represent a single novel species within a new genus, for which the name Hazenella coriacea gen. nov., sp. nov. is proposed. The type strain of Hazenella coriacea is strain 23436T ( = DSM 45707T = LMG 27204T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2002-2007 ◽  
Author(s):  
Wen Tao Zheng ◽  
Ying Li ◽  
Rui Wang ◽  
Xin Hua Sui ◽  
Xiao Xia Zhang ◽  
...  

In a study on the diversity of rhizobia isolated from root nodules of Astragalus sinicus, five strains showed identical 16S rRNA gene sequences. They were related most closely to the type strains of Mesorhizobium loti , Mesorhizobium shangrilense , Mesorhizobium ciceri and Mesorhizobium australicum , with sequence similarities of 99.6–99.8 %. A polyphasic approach, including 16S–23S intergenic spacer (IGS) RFLP, comparative sequence analysis of 16S rRNA, atpD, glnII and recA genes, DNA–DNA hybridization and phenotypic tests, clustered the five isolates into a coherent group distinct from all recognized Mesorhizobium species. Except for strain CCBAU 33446, from which no symbiotic gene was detected, the four remaining strains shared identical nifH and nodC gene sequences and nodulated with Astragalus sinicus. In addition, these five strains showed similar but different fingerprints in IGS-RFLP and BOX-repeat-based PCR, indicating that they were not clones of the same strain. They were also distinguished from recognized Mesorhizobium species by several phenotypic features and fatty acid profiles. Based upon all the results, we suggest that the five strains represent a novel species for which the name Mesorhizobium qingshengii sp. nov. is proposed. The type strain is CCBAU 33460T ( = CGMCC 1.12097T = LMG 26793T = HAMBI 3277T). The DNA G+C content of the type strain is 59.52 mol% (T m).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 3950-3957 ◽  
Author(s):  
Jerri E. Zilli ◽  
Alexandre C. Baraúna ◽  
Krisle da Silva ◽  
Sofie E. De Meyer ◽  
Eliane N. C. Farias ◽  
...  

Root nodule bacteria were isolated from Centrolobium paraense Tul. grown in soils from the Amazon region, State of Roraima (Brazil). 16S rRNA gene sequence analysis of seven strains (BR 10247T, BR 10296, BR 10297, BR 10298, BR 10299, BR 10300 and BR 10301) placed them in the genus Bradyrhizobium with the closest neighbours being the type strains of Bradyrhizobium paxllaeri (98.8 % similarity), Bradyrhizobium icense (98.8 %), Bradyrhizobium lablabi (98.7 %), Bradyrhizobium jicamae (98.6 %), Bradyrhizobium elkanii (98.6 %), Bradyrhizobium pachyrhizi (98.6 %) and Bradyrhizobium retamae (98.3 %). This high similarity, however, was not confirmed by the intergenic transcribed spacer (ITS) 16S–23S rRNA region sequence analysis nor by multi-locus sequence analysis. Phylogenetic analyses of five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EK05T ( = LMG 24129T) to be the most closely related type strain (95.7 % sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [major components being C16 : 0 and summed feature 8 (18 : 1ω6c/18 : 1ω7c)], DNA G+C content, slow growth rate and carbon compound utilization patterns, supported the placement of the novel strains in the genus Bradyrhizobium . Results of DNA–DNA relatedness studies and physiological data (especially carbon source utilization) differentiated the strains from the closest recognized species of the genus Bradyrhizobium . Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) placed the novel species in a new branch within the genus Bradyrhizobium . Based on the current data, these seven strains represent a novel species for which the name Bradyrhizobium neotropicale sp. nov. is proposed. The type strain is BR 10247T ( = HAMBI 3599T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4198-4201 ◽  
Author(s):  
Annelies De Bel ◽  
Pavel Švec ◽  
Petr Petráš ◽  
Ivo Sedláček ◽  
Roman Pantůček ◽  
...  

The type and clinical strains of two recently described coagulase-negative species of the genus Staphylococcus, Staphylococcus petrasii and Staphylococcus jettensis , were compared using dnaJ, tuf, gap, hsp60 and rpoB gene sequences, DNA–DNA hybridization, ribotyping, repetitive sequence-based PCR fingerprinting and extensive biochemical characterization. Based on the results, the species description of S. petrasii has been emended and S. jettensis should be reclassified as a novel subspecies within S. petrasii for which the name Staphylococcus petrasii subsp. jettensis subsp. nov. is proposed. The type strain is SEQ110T ( = LMG 26879T = CCUG 62657T = DSM 26618T = CCM 8494T).


Sign in / Sign up

Export Citation Format

Share Document