scholarly journals Granulosicoccus marinus sp. nov., isolated from Antarctic seawater, and emended description of the genus Granulosicoccus

2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4103-4108 ◽  
Author(s):  
Kiwoon Baek ◽  
Ahyoung Choi ◽  
Ilnam Kang ◽  
Mihye Im ◽  
Jang-Cheon Cho

A Gram-staining-negative, motile by flagella, non-pigmented, poly-β-hydroxybutyrate-producing, strictly aerobic and sphere-shaped bacterium, IMCC3490T, was isolated from a coastal seawater sample from the Antarctic Peninsula. Optimal growth of strain IMCC3490T was observed at 20 °C, pH 8.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain IMCC3490T belonged to the genus Granulosicoccus in the family Granulosicoccaceae . The strain was closely related to Granulosicoccus antarcticus IMCC3135T (98.8 % 16S rRNA gene sequence similarity) and Granulosicoccus coccoides Z 271T (98.5 %). The DNA–DNA relatedness values between IMCC3490T and type strains of the two species of the genus were far lower than 70 %, which indicated strain IMCC3490T is a novel genomic species of the genus Granulosicoccus . The major fatty acids of strain IMCC3490T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The isoprenoid quinone detected was ubiquinone-8 (Q-8) and predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 61.0 mol%. On the basis of phylogenetic analyses, DNA–DNA relatedness values and phenotypic data, it is suggested that strain IMCC3490T represents a novel species of the genus Granulosicoccus , for which the name Granulosicoccus marinus sp. nov. is proposed. The type strain is IMCC3490T ( = KACC 17483T = NBRC 109704T). An emended description of the genus Granulosicoccus is also provided.

2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1207-1212 ◽  
Author(s):  
Hong-Fei Wang ◽  
Yong-Guang Zhang ◽  
Ji-Yue Chen ◽  
Jian-Wei Guo ◽  
Li Li ◽  
...  

A novel endophytic actinobacterium, designated EGI 6500707T, was isolated from the surface-sterilized root of a halophyte Anabasis elatior (C. A. Mey.) Schischk collected from Urumqi, Xinjiang province, north-west China, and characterized using a polyphasic approach. Cells were Gram-stain-positive, non-motile, short rods and produced white colonies. Growth occurred at 10–45 °C (optimum 25–30 °C), at pH 5–10 (optimum pH 8) and in presence of 0–4 % (w/v) NaCl (optimum 0–3 %). The predominant menaquinone was MK-9. The diagnostic phospholipids were diphosphatidylglycerol and phosphatidylglycerol. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content of strain EGI 6500707T was 69.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain EGI 6500707T should be placed in the genus Frigoribacterium (family Microbacteriaceae , phylum Actinobacteria ), and that the novel strain exhibited the highest 16S rRNA gene sequence similarity to Frigoribacterium faeni JCM 11265T (99.1 %) and Frigoribacterium mesophilum MSL-08T (96.5 %). DNA–DNA relatedness between strain EGI 6500707T and F. faeni JCM 11265T was 47.2 %. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain EGI 6500707T represents a novel species of the genus Frigoribacterium , for which the name Frigoribacterium endophyticum sp. nov. is proposed. The type strain is EGI 6500707T ( = JCM 30093T = KCTC 29493T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2895-2900 ◽  
Author(s):  
Renukaradhya K. Math ◽  
Hyun Mi Jin ◽  
Sang Hyeon Jeong ◽  
Che Ok Jeon

A novel Gram-staining-negative, strictly aerobic bacterium, designated BS14T, was isolated from a marine tidal flat of the South Sea in Korea. Colonies were opaque, white, smooth and circular on marine agar. Cells were moderately halophilic, non-motile rods showing catalase- and oxidase-positive reactions. Growth of strain BS14T was observed at 5–40 °C (optimum: 30 °C), pH 6.5–9.5 (optimum: 7.0–7.5) and 0–10 % (w/v) NaCl (optimum: 1–1.5 %). The G+C content of the genomic DNA was 61.6 mol%. Strain BS14T contained ubiquinone-10 (Q-10) as the sole respiratory quinone and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), C18 : 0 3-OH, C10 : 0 3-OH and C18 : 0 as the major fatty acids. The polar lipid pattern comprised phosphatidylethanolamine, diphosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid and an unidentified polar lipid. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BS14T formed a tight phylogenetic lineage with Defluviimonas denitrificans D9-3T with a bootstrap value of 100 %. The 16S rRNA gene sequence similarity between strain BS14T and D. denitrificans D9-3T was 97.4 % and their DNA–DNA relatedness was 19.1±3.6 %. Based on the phenotypic and genotypic studies, strain BS14T represents a novel species of the genus Defluviimonas , for which the name Defluviimonas aestuarii sp. nov. is proposed. The type strain is BS14T ( = KACC 16442T = JCM 18630T). An emended description of the genus Defluviimonas Foesel et al. 2011 is also proposed.


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2674-2679 ◽  
Author(s):  
Pushp Lata ◽  
Devi Lal ◽  
Rup Lal

A Gram-negative, strictly aerobic, yellow bacterial strain, designated DS-12T, was isolated from hexachlorocyclohexane-contaminated soil in Lucknow, Uttar Pradesh, India. Strain DS-12T showed the highest 16S rRNA gene sequence similarity with Flavobacterium ceti 454-2T (94.2 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-12T belonged to the genus Flavobacterium . Strain DS-12T produced flexirubin-type pigments. Gliding motility was not observed. The major fatty acids of strain DS-12T were iso-C15 : 0 (48.0 %), summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl; 19.3 %), iso-C17 : 0 3-OH (8.5 %) and summed feature 3 (comprising one or more of C16 : 1ω7c, C16 : 1ω6c and iso-C15 : 0 2-OH; 7.2 %). The only respiratory quinone was menaquinone-6 and the major polyamine was homospermidine. Strain DS-12T contained phosphatidyldimethylethanolamine, phosphatidylserine, phosphatidylethanolamine, one unknown phospholipid and one unknown aminolipid. The DNA G+C content was 37.4 mol%. Phylogenetic inference and phenotypic properties indicated that strain DS-12T represents a novel species of the genus Flavobacterium , for which the name Flavobacterium ummariense sp. nov. is proposed. The type strain is DS-12T ( = CCM 7847T  = MTCC 10766T). An emended description of Flavobacterium ceti is also given.


2020 ◽  
Vol 70 (6) ◽  
pp. 3606-3613 ◽  
Author(s):  
Zixiao Xu ◽  
Yuxiao Zhang ◽  
Yasir Muhammad ◽  
Gejiao Wang

A soil bacterium, designated ZX9611T, was isolated from Taihang Mountain in Henan province, PR China. The strain was Gram-stain-negative and strictly aerobic. The cells were motile, rod-shaped and formed light pink-colored colonies. The 16S rRNA gene sequence of ZX9611T shared the highest similarities with those of Sphingomonas crocodyli CCP-7T (97.0%), Sphingomonas jatrophae S5-249T (96.6%) and Sphingomonas starnbergensis 382T (95.9%). Phylogenetic analyses based on 16S rRNA gene sequences demonstrated that ZX9611T clustered with S. crocodyli CCP-7T, S. jatrophae S5-249T and S. starnbergensis 382T. The average nucleotide identity (ANI) values between ZX9611T and two type strains ( S. crocodyli BCRC 81096T and S. jatrophae DSM 27345T) were 88.3 and 68.6% respectively. ZX9611T exhibited genome-sequence-based digital DNA–DNA hybridization (dDDH) values of 53.3 % and 15.3 %, compared with S. crocodyli BCRC 81096T and S . jatrophae DSM 27345T, respectively. ZX9611T had a genome size of 4.12 Mb and an average DNA G+C content of 64.8 %. ZX9611T had major fatty acids (>5 %) including summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c), C14 : 0 2-OH, C16 : 0 and summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c), and the major polyamine was sym-homospermidine. The only respiratory quinone was ubiquinone-10. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, strain ZX9611T represents a novel species of genus Sphingomonas, for which the name Sphingomonas montanisoli sp. nov. is proposed. The type strain is ZX9611T (=KCTC 72622T=CCTCC AB 2019350T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 755-760 ◽  
Author(s):  
Dong-Heon Lee ◽  
Jae Seoun Hur ◽  
Hyung-Yeel Kahng

A strictly aerobic, Gram-stain-negative bacterium, designated strain No.6T, was isolated from a lichen (Cladonia sp.) collected in Geogeum Island, Korea, and its taxonomic status was established by a polyphasic study. Cells of strain No.6T were non-motile, catalase- and oxidase-positive, non-spore-forming rods. Growth was observed at 15–35 °C (optimum, 25–30 °C), at pH 5.0–10.0 (optimum, pH 6.0–8.0) and with 0–3 % NaCl (optimum, 0–2 %). The predominant cellular fatty acids were summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, 41.5 %), iso-C15 : 0 (26.7 %) and C16 : 0 (9.6 %), and menaquinone MK-7 was the only respiratory quinone. The G+C content of the genomic DNA of strain No.6T was 36.8 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain No.6T fell within the evolutionary group encompassed by the genus Sphingobacterium . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of recognized Sphingobacterium species ranged from 92.1 to 99.1 %, the highest values being with Sphingobacterium siyangense SY1T (99.1 %) and Sphingobacterium multivorum IAM 14316T (98.5 %). DNA–DNA relatedness between strain No.6T and these two type strains were 32.0 and 5.7 %, respectively. The polar lipids found in strain No.6T were phosphatidylethanolamine, two unidentified phospholipids, three unidentified aminophospholipids, one glycolipid and four unidentified lipids. One unidentified sphingolipid was also found. On the basis of phenotypic and genotypic data, strain No.6T represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium cladoniae sp. nov. is proposed. The type strain is No.6T ( = KCTC 22613T = JCM 16113T). An emended description of Sphingobacterium siyangense is also proposed.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 479-484 ◽  
Author(s):  
Linfang Wei ◽  
Meiru Si ◽  
Mingxiu Long ◽  
Lingfang Zhu ◽  
Changfu Li ◽  
...  

A yellowish-pigmented bacterium, designated strain PLGR-1T, was isolated from the root of Bergenia scopulosa collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. Cells of strain PLGR-1T were Gram-stain-negative, strictly aerobic, rod-shaped, non-spore-forming and motile with a single polar flagellum. Growth occurred at 7–33 °C (optimum, 25–28 °C), at pH 5.0–10.0 (optimum, pH 6.0–7.0) and with 0–0.5 % (w/v) NaCl (optimum, 0 %). The predominant respiratory quinone was ubiquinone-8 (Q-8) and the major cellular fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). The major polyamines were putrescine and 2-hydroxyputrescine and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 69.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain PLGR-1T belonged to the class Betaproteobacteria and formed a tight phyletic lineage with members of the genus Rhizobacter . Strain PLGR-1T was most closely related to Rhizobacter dauci DSM 11587T and Rhizobacter fulvus DSM 19916T, with 16S rRNA gene sequence similarities of 98.5 and 98.0 %, respectively. The DNA–DNA relatedness values between strain PLGR-1T and the type strains of Rhizobacter dauci and Rhizobacter fulvus were 46.3 and 14.7 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain PLGR-1T is considered to represent a novel species of the genus Rhizobacter , for which the name Rhizobacter bergeniae sp. nov. is proposed. The type strain is PLGR-1T ( = CCTCC AB 2013018T = KCTC 32299T = LMG 27607T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6257-6265 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim

A marine alphaproteobacterium, designated as strain GH3-10T, was isolated from the rhizosphere mud of a halophyte (Suaeda japonica) collected at the seashore of Gangwha Island, Republic of Korea. The isolate was found to be Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive, non-motile, short rods and produced orange-coloured colonies. The 16S rRNA gene- and whole genome-based phylogenetic analyses exhibited that strain GH3-10T belonged to the genus Aurantiacibacter and was most closely related to Aurantiacibacter atlanticus s21-N3T (98.7 % 16S rRNA gene sequence similarity) and Aurantiacibacter marinus KCTC 23554T (98.4 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unidentified lipid. The major fatty acids were C18 : 1  ω7c, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and C18 : 1  ω7c 10-methyl. The DNA G+C content was 61.3 mol% (by genome). Average nucleotide identity and DNA–DNA relatedness values between the isolate and its phylogenetically closest relatives, together with phenotypic distinctness warranted the taxonomic description of a new species. On the basis of data obtained by a polyphasic approach, strain GH3-10T (=KCTC 62379T=JCM 32444T) represents a novel species of the genus Aurantiacibacter , for which the name Aurantiacibacter rhizosphaerae sp. nov. is proposed. According to phylogenetic coherence based on 16S rRNA genes and core genomes, it is also proposed that Erythrobacter suaedae Lee et al. 2019. and Erythrobacter flavus Yoon et al. 2003 be transferred to Aurantiacibacter suaedae comb. nov. and Qipengyuania flava comb. nov., respectively.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1610-1615 ◽  
Author(s):  
Mi-Hwa Lee ◽  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-flagellated, gliding, rod-shaped bacterial strain, designated WT-MY15T, was isolated from wood falls in the South Sea in Korea and subjected to a polyphasic taxonomic study. Strain WT-MY15T grew optimally at pH 7.0–8.0, at 25 °C and in the presence of 2.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain WT-MY15T clustered with the type strains of two Olleya species, exhibiting 16S rRNA gene sequence similarity values of 97.7–98.1 %. Strain WT-MY15T contained MK-6 as the predominant menaquinone. The fatty acid and polar lipid profiles of strain WT-MY15T were similar to those of Olleya aquimaris L-4T and Olleya marilimosa CIP 108537T. The DNA G+C content of strain WT-MY15T was 42.8 mol% and its mean DNA–DNA relatedness values with O. aquimaris L-4T and O. marilimosa CIP 108537T were 8.3 and 5.6 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WT-MY15T is separate from the two recognized species of the genus Olleya . On the basis of the data presented, strain WT-MY15T is considered to represent a novel species of the genus Olleya , for which the name Olleya namhaensis sp. nov. is proposed. The type strain is WT-MY15T ( = KCTC 23673T = CCUG 61507T). An emended description of the genus Olleya is also presented.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2927-2933 ◽  
Author(s):  
Ying Liu ◽  
Jia-Tong Jiang ◽  
Cheng-Jun Xu ◽  
Ying-Hao Liu ◽  
Xue-Feng Song ◽  
...  

The bacterial strain LH2-2T was isolated from freshwater of Longhu Lake, a slightly alkaline lake (pH 8.8) in north-east China. Cells of strain LH2-2T were Gram-staining-negative, non-spore-forming rods, 0.3–0.5 µm wide and 2.0–4.0 µm long. Cells were motile by means of a single polar flagellum. The strain was strictly aerobic and heterotrophic and oxidase- and catalase-positive. Growth occurred at 0–36 °C (optimum, 26–34 °C), pH 6.5–11 (optimum, pH 8.0–8.6) and in the presence of 0–2 % (w/v) NaCl (optimum, 1 %). Strain LH2-2T contained Q-8 as the major respiratory quinone. The major fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH; 21.9 %), C17 : 1ω8c (18.9 %), C18 : 1ω7c (16.4 %) and C16 : 0 (12.7 %) after growth on marine agar 2216. The DNA G+C content was 47 mol% (T m). The 16S rRNA gene and a conserved portion of the gyrB gene were sequenced and used for phylogenetic analyses. Phylogenetic trees based on 16S rRNA gene and gyrB sequences showed that strain LH2-2T was associated with the genus Rheinheimera and closely related to the type strains of Rheinheimera species, and showed the highest 16S rRNA gene sequence similarity to Rheinheimera pacifica KMM 1406T (97.4 %), R. aquimaris SW-353T (97.1 %) and R. chironomi K19414T (96.5 %). The DNA–DNA relatedness of strain LH2-2T to R. pacifica NBRC 103167T, R. aquimaris JCM 14331T and R. chironomi LMG 23818T was 39, 31 and 23 %, respectively. Based on these results, it is concluded that strain LH2-2T represents a novel species of the genus Rheinheimera , for which the name Rheinheimera longhuensis sp. nov. is proposed. The type strain is LH2-2T ( = CGMCC 1.7003T  = NBRC 105632T). An emended description of the genus Rheinheimera is also provided.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 3049-3054 ◽  
Author(s):  
Renukaradhya K. Math ◽  
Sang Hyeon Jeong ◽  
Hyun Mi Jin ◽  
Moon Su Park ◽  
Jeong Myeong Kim ◽  
...  

A Gram-staining negative, strictly aerobic bacterium, designated 101-1T, was isolated from a sea tidal flat, Taean, Korea. The strain formed small light-yellow, smooth, and circular colonies on marine agar. Cells were weakly halophilic, motile rods showing catalase- and oxidase-positive reactions. Growth of strain 101-1T was observed at 15–40 °C (optimum, 30 °C), pH 5.0–8.0 (optimum, pH 6.5–7.0) and 1.0–9.0 % (w/v) NaCl (optimum, 2.0–3.5 %). The G+C content of the genomic DNA was 53.3 mol%. Strain 101-1T contained ubiquinone-10 (Q-10) as the respiratory quinone and iso-C17 : 1ω9c, iso-C15 : 0 and iso-C17 : 0 as major fatty acids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 101-1T formed a tight phylogenetic lineage with members of the genus Kordiimonas and was most closely related to Kordiimonas gwangyangensis GW14-5T and Kordiimonas lacus S3-22T with 97.3 % and 96.3 % 16S rRNA gene sequence similarities, respectively. The DNA–DNA relatedness values between strain 101-1T and K. gwangyangensis GW14-5T and K. lacus S3-22T were 24.8±4.4 % and 32.2±3.6 %, respectively. Based on the data from the phenotypic and genotypic studies, strain 101-1T represents a novel species of the genus Kordiimonas , for which the name Kordiimonas aestuarii sp. nov. is proposed. The type strain is 101-1T ( = KACC 16184T = JCM 17742T).


Sign in / Sign up

Export Citation Format

Share Document