scholarly journals Clostridium hastiforme is a later synonym of Tissierella praeacuta

2004 ◽  
Vol 54 (3) ◽  
pp. 947-949 ◽  
Author(s):  
Jin-Woo Bae ◽  
Ja Ryeong Park ◽  
Young-Hyo Chang ◽  
Sung-Keun Rhee ◽  
Byung-Chun Kim ◽  
...  

The previously proposed species Clostridium hastiforme and Tissierella praeacuta appear to be similar from their published descriptions. Accordingly, the aim of the current study was to perform phenotypic and genetic analyses of the type strains of both species, in order to clarify their taxonomic positions. The type strains of C. hastiforme (DSM 5675T) and T. praeacuta (NCTC 11158T) exhibited identical biochemical profiles and their 16S rRNA gene sequences displayed 99·9 % similarity. DNA–DNA hybridization was also estimated to be 96·5 %. Thus, it was concluded that C. hastiforme and T. praeacuta are synonyms, where T. praeacuta has priority. An emended description of the genus Tissierella is also given.

Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4335-4340 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A beige-pigmented bacterial strain (JM-310T), isolated from the healthy internal root tissue of 4-week-old cotton (Gossypium hirsutum, cultivar ‘DES-119’) in Tallassee (Macon county), Alabama, USA, was studied taxonomically. The isolate produced small rod-shaped cells, which showed a Gram-negative staining behaviour. A comparison of the 16S rRNA gene sequence of the isolate revealed 99.2, 98.8, 98.7, 98.7, 98.1 and 97.6 % similarity to the 16S rRNA gene sequences of the type strains of Variovorax paradoxus, Variovorax boronicumulans, Variovorax ginsengisoli, Variovorax soli, Variovorax defluvii and Variovorax dokdonensis, respectively. In phylogenetic trees based on 16S rRNA gene sequences, strain JM-301T was placed within the monophyletic cluster of Variovorax species. The fatty acid profile of strain JM-310T consisted mainly of the major fatty acids C16 : 0, C10 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH/C16 : 1ω7c/t). The quinone system of strain JM-310T contained predominantly ubiquinone Q-8 and lesser amounts of Q-7 and Q-9. The major polyamine was putrescine and the diagnostic polyamine 2-hydroxyputrescine was detected as well. The polar lipid profile consisted of the major lipids phosphatidylethanolamine, phosphatidylglycerol, diphospatidylglycerol and several unidentified lipids. DNA–DNA hybridization experiments with V. paradoxus LMG 1797T, V. boronicumulans 1.22T, V. soli KACC 11579T and V. ginsengisoli 3165T gave levels of relatedness of < 70 %. These DNA–DNA hybridization results in addition to differential biochemical properties indicate clearly that strain JM-310T is a member of a novel species, for which the name Variovorax gossypii sp. nov. is proposed. The type strain is JM-310T ( = LMG 28869T = CIP 110912T = CCM 8614T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1108-1112 ◽  
Author(s):  
Venessa Eeckhaut ◽  
Filip Van Immerseel ◽  
Frank Pasmans ◽  
Evie De Brandt ◽  
Freddy Haesebrouck ◽  
...  

Four butyrate-producing isolates were obtained from the caecal content of a 4-week-old broiler chicken. The 16S rRNA gene sequences were determined and confirmed the close relatedness of the four isolates, which suggested that they were derived from a single bacterial clone. Phylogenetic analysis based on 16S rRNA gene sequences showed that its closest relatives were members of cluster XIVa of the Clostridium subphylum of Gram-positive bacteria and that the closest related type strain was Anaerostipes caccae L1-92T (94.5 % similarity). Similarity levels of 96–98 % with sequences from uncultured bacteria from human stool samples were observed. On the basis of morphological, biochemical and phylogenetic characteristics, this strain is assigned to a novel species in the genus Anaerostipes, for which the name Anaerostipes butyraticus sp. nov. is proposed. The type strain is 35-7T (=LMG 24724T =DSM 22094T). An emended description of the genus Anaerostipes is also provided.


2010 ◽  
Vol 60 (6) ◽  
pp. 1444-1449 ◽  
Author(s):  
D. P. Labeda ◽  
N. P. Price ◽  
G. Y. A. Tan ◽  
M. Goodfellow ◽  
H.-P. Klenk

The species Amycolatopsis fastidiosa (ex Celmer et al. 1977) Henssen et al. 1987 was proposed, based on morphological and chemotaxonomic observations, for a strain originally described as ‘Pseudonocardia fastidiosa’ Celmer et al. 1977 in a US patent. In the course of a phylogenetic study of the taxa with validly published names within the suborder Pseudonocardineae based on 16S rRNA gene sequences, it became apparent that this species was misplaced in the genus Amycolatopsis. After careful evaluation of the phylogeny, morphology, chemotaxonomy and physiology of the type strain, it was concluded that this strain represents a species of the genus Actinokineospora that is unable to produce motile spores. The description of the genus Actinokineospora is therefore emended to accommodate species that do not produce motile spores, and it is proposed that Amycolatopsis fastidiosa be transferred to the genus Actinokineospora as Actinokineospora fastidiosa comb. nov. The type strain is NRRL B-16697T =ATCC 31181T =DSM 43855T =JCM 3276T =NBRC 14105T =VKM Ac-1419T.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2130-2134 ◽  
Author(s):  
Sha Liu ◽  
Dong Jin ◽  
Ruiting Lan ◽  
Yiting Wang ◽  
Qiong Meng ◽  
...  

The taxonomic position of a group of seven closely related lactose-negative enterobacterial strains, which were isolated from fresh faecal samples of Marmota himalayana collected from the Qinghai-Tibetan plateau, China, was determined by using a polyphasic approach. Cells were Gram-reaction-negative, non-sporulating, non-motile, short rods (0.5–1 × 1–2.5 μm). By 16S rRNA gene sequences, the representative strain, HT073016T, showed highest similarity values with Escherichia fergusonii ATCC 35469T at 99.3 %, Escherichia coli ATCC 11775T at 99.2 %, Escherichia albertii LMG 20976T at 98.9 %, Escherichia hermannii CIP 103176T at 98.4 %, and Escherichia vulneris ATCC 33821T at 97.7 %. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the seven strains formed a monophyletic group with five other species of the genus Escherichia. Digital DNA–DNA hybridization studies between strain HT073016T and five other species of the genus Escherichia showed that it shared less than 70 % DNA–DNA relatedness with all known species of the genus Escherichia, supporting the novel species status of the strain. The DNA G+C content of strain HT073016T was 53.8 mol%. On the basis of phenotypic and phylogenetic characteristics, strain HT073016T and the six other HT073016T-like strains were clearly distinct from the type strains of other recognized species of the genus Escherichia and represent a novel species of the genus Escherichia, for which the name Escherichia marmotae sp. nov. is proposed, with HT073016T ( = CGMCC 1.12862T = DSM 28771T) as the type strain.


2006 ◽  
Vol 56 (12) ◽  
pp. 2893-2897 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Peter Schumann ◽  
So-Jung Kang ◽  
Seo-Youn Jung ◽  
Tae-Kwang Oh

A Gram-positive, non-motile, rod- or coccoid-shaped Isoptericola-like bacterium, strain DS-3T, was isolated from a soil sample from Dokdo, Korea, and its taxonomic position was investigated by a polyphasic approach. The organism grew optimally at 30 °C and pH 7.0–8.0. Strain DS-3T had the peptidoglycan type based on l-lys–d-Asp, and galactose, glucose, rhamnose and ribose as the whole-cell sugars. It contained MK-9(H4) as the predominant menaquinone and anteiso-C15 : 0 and iso-C15 : 0 as the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unidentified glycolipids. The DNA G+C content was 74.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-3T was most closely related to members of the genus Isoptericola. Similarity values between the 16S rRNA gene sequences of strain DS-3T and the type strains of Isoptericola species ranged from 98.0 to 98.4 %. DNA–DNA relatedness values (11–23 %) and differential phenotypic properties demonstrated that strain DS-3T was distinguishable from recognized Isoptericola species. On the basis of phenotypic properties and phylogenetic and genetic distinctiveness, strain DS-3T represents a novel species in the genus Isoptericola, for which the name Isoptericola dokdonensis sp. nov. is proposed. The type strain is DS-3T (=KCTC 19128T=CIP 108921T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3804-3809 ◽  
Author(s):  
Samantha J. Stropko ◽  
Shannon E. Pipes ◽  
Jeffrey D. Newman

While characterizing a related strain, it was noted that there was little difference between the 16S rRNA gene sequences of Bacillus indicus LMG 22858T and Bacillus cibi DSM 16189T. Phenotypic characterization revealed differences only in the utilization of mannose and galactose and slight variation in pigmentation. Whole genome shotgun sequencing and comparative genomics were used to calculate established phylogenomic metrics and explain phenotypic differences. The full, genome-derived 16S rRNA gene sequences were 99.74 % similar. The average nucleotide identity (ANI) of the two strains was 98.0 %, the average amino acid identity (AAI) was 98.3 %, and the estimated DNA–DNA hybridization determined by the genome–genome distance calculator was 80.3 %. These values are higher than the species thresholds for these metrics, which are 95 %, 95 % and 70 %, respectively, suggesting that these two strains should be classified as members of the same species. We propose reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and an emended description of Bacillus indicus .


2006 ◽  
Vol 56 (6) ◽  
pp. 1251-1255 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming, slightly halophilic bacterial strain, DSW-5T, was isolated from seawater off Dokdo, Korea, and subjected to a polyphasic taxonomic study. It grew optimally at 25–28 °C and in the presence of 2 % (w/v) NaCl. Strain DSW-5T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected were phosphatidylethanolamine, three unidentified phospholipids and an amino-group-containing lipid. The DNA G+C content was 30.0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DSW-5T was most closely related to the genus Polaribacter. Similarity values between the 16S rRNA gene sequences of strain DSW-5T and the type strains of recognized Polaribacter species were in the range 96.2–96.8 %. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DSW-5T (=KCTC 12392T=DSM 17204T) was classified in the genus Polaribacter as the type strain of a novel species, for which the name Polaribacter dokdonensis sp. nov. is proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 777-780 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming bacterial strain, DS-44T, was isolated from soil from Dokdo in Korea, and its taxonomic position was investigated by using a polyphasic approach. It grew optimally at 25 °C and in the presence of 2 % (w/v) NaCl. Strain DS-44T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 49·0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-44T belongs to the genus Algoriphagus of the phylum Bacteroidetes. Similarity values between the 16S rRNA gene sequences of strain DS-44T and those of the type strains of recognized Algoriphagus species were in the range 93·8–95·7 %, making it possible to categorize strain DS-44T as a species that is separate from previously described Algoriphagus species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DS-44T (=KCTC 12545T=CIP 108837T) was classified in the genus Algoriphagus as the type strain of a novel species, for which the name Algoriphagus terrigena sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2259-2261 ◽  
Author(s):  
Jongsik Chun ◽  
Jae-Hak Lee ◽  
Yoonyoung Jung ◽  
Myungjin Kim ◽  
Seil Kim ◽  
...  

16S rRNA gene sequences have been widely used for the identification of prokaryotes. However, the flood of sequences of non-type strains and the lack of a peer-reviewed database for 16S rRNA gene sequences of type strains have made routine identification of isolates difficult and labour-intensive. In the present study, we generated a database containing 16S rRNA gene sequences of all prokaryotic type strains. In addition, a web-based tool, named EzTaxon, for analysis of 16S rRNA gene sequences was constructed to achieve identification of isolates based on pairwise nucleotide similarity values and phylogenetic inference methods. The system developed provides users with a similarity-based search, multiple sequence alignment and various phylogenetic analyses. All of these functions together with the 16S rRNA gene sequence database of type strains can be successfully used for automated and reliable identification of prokaryotic isolates. The EzTaxon server is freely accessible over the Internet at http://www.eztaxon.org/


Sign in / Sign up

Export Citation Format

Share Document