scholarly journals Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose

2005 ◽  
Vol 55 (3) ◽  
pp. 1267-1270 ◽  
Author(s):  
J. J. Leisner ◽  
M. Vancanneyt ◽  
R. Van der Meulen ◽  
K. Lefebvre ◽  
K. Engelbeen ◽  
...  

Three lactic acid bacterial (LAB) strains obtained from a Malaysian acid-fermented condiment, tempoyak (made from pulp of the durian fruit), showed analogous but distinct patterns after screening by SDS-PAGE of whole-cell proteins and comparison with profiles of all recognized LAB species. 16S rRNA gene sequencing of one representative strain showed that the taxon belongs phylogenetically to the genus Leuconostoc, with its nearest neighbour being Leuconostoc fructosum (98 % sequence similarity). Biochemical characteristics and DNA–DNA hybridization experiments demonstrated that the strains differ from Leuconostoc fructosum and represent a single, novel Leuconostoc species for which the name Leuconostoc durionis sp. nov. is proposed. The type strain is LMG 22556T (=LAB 1679T=D-24T=CCUG 49949T).

2010 ◽  
Vol 60 (2) ◽  
pp. 369-377 ◽  
Author(s):  
Kwang Kyu Kim ◽  
Keun Chul Lee ◽  
Hee-Mock Oh ◽  
Jung-Sook Lee

A total of 14 Halomonas strains were isolated from the blood of two patients and from dialysis machines of a renal care centre. The strains were Gram-negative, halophilic, motile and non-spore-forming rods. They produced cream-coloured colonies and contained Q-9 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. Phylogenetic analysis based on 16S rRNA gene sequencing showed that the 14 isolates were most closely related to Halomonas magadiensis 21 MIT with 98.1–98.9 % sequence similarity and that they formed three separate lineages among themselves. Combined phenotypic and DNA–DNA hybridization data support the conclusion that they represent three novel species of the genus Halomonas, for which the names Halomonas stevensii sp. nov. (type strain S18214T=KCTC 22148T=DSM 21198T), Halomonas hamiltonii sp. nov. (type strain W1025T=KCTC 22154T=DSM 21196T) and Halomonas johnsoniae sp. nov. (type strain T68687T=KCTC 22157T=DSM 21197T) are proposed.


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 952-958 ◽  
Author(s):  
Keun Chul Lee ◽  
Kwang Kyu Kim ◽  
Mi Kyung Eom ◽  
Jong-Shik Kim ◽  
Dae-Shin Kim ◽  
...  

A novel bacterial strain, designated SA3-7T, was isolated from soil of a lava forest located in Jeju, Republic of Korea. Cells of strain SA3-7T were Gram-stain-negative, oxidase- and catalase-positive, non-motile rods and produced creamy white colonies on ten-fold-diluted R2A agar. The isolate contained menaquinone-7 (MK-7) as the predominant isoprenoid quinone and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The DNA G+C content was 43.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain SA3-7T was related most closely to Mucilaginibacter frigoritolerans FT22T (96.7 % sequence similarity) and that it formed a separate lineage in the genus Mucilaginibacter . Combined phenotypic, chemotaxonomic and phylogenetic characteristics supported the conclusion that strain SA3-7T represents a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter gotjawali sp. nov. is proposed; the type strain is SA3-7T ( = KCTC 32515T = CECT 8628T = DSM 29289T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3320-3325 ◽  
Author(s):  
Keun Chul Lee ◽  
Kwang Kyu Kim ◽  
Jong-Shik Kim ◽  
Dae-Shin Kim ◽  
Suk-Hyung Ko ◽  
...  

A Gram-stain-negative, non-motile, yellow-pigmented and rod-shaped bacterial strain, designated SN6-13T, was isolated from soil of the Gotjawal, lava forest, located in Jeju, Republic of Korea. Cells of strain SN6-13T were oxidase- and catalase-positive. The isolate contained Q-10 as the predominant isoprenoid quinone, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0 as the major fatty acids, sym-homospermidine as the major polyamine and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, ninhydrinphosphatidylglycerol and two unidentified aminophospholipids as the polar lipids. The DNA G+C content was 64.6 mol%. In phylogenetic analyses based on 16S rRNA gene sequencing, strain SN6-13T was most closely related to Sphingomonas laterariae LNB2T (95.4 % sequence similarity) and formed a separate lineage in the genus Sphingomonas. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, it is concluded that strain SN6-13T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas vulcanisoli sp. nov. is proposed. The type strain is SN6-13T ( = KCTC 42454T = CECT 8804T).


2005 ◽  
Vol 55 (2) ◽  
pp. 719-724 ◽  
Author(s):  
Li-Ping Zhang ◽  
Cheng-Lin Jiang ◽  
Wen-Xin Chen

Two strains of Streptosporangium were isolated from Yunnan Province, a region of China with specific geographical conditions that contribute to its great microbiological diversity. They were identified using a polyphasic approach employing phenotypic, genotypic and phylogenetic techniques, such as study of morphological and physiological properties, cell chemistry, G+C content of the genomic DNA, DNA–DNA hybridization and phylogenetic analysis. The strains belong to two novel species of Streptosporangium on the basis of 16S rRNA gene sequencing. The results of morphological, physiological and biochemical investigations and DNA–DNA hybridization indicated that the two strains are different from known members of the genus Streptosporangium. The names Streptosporangium yunnanense sp. nov. (type strain CY-11007T=CCTCC AA 97009T=CCRC 16307T=DSM 44663T) and Streptosporangium purpuratum sp. nov. (type strain CY-15110T=CCTCC AA 97010T=CCRC 16308T=DSM 44688T) are proposed. They have been deposited in CCTCC in Wuhan.


2011 ◽  
Vol 61 (10) ◽  
pp. 2503-2507 ◽  
Author(s):  
Satoru Shimizu ◽  
Rahul Upadhye ◽  
Yoji Ishijima ◽  
Takeshi Naganuma

A methanogenic organism, designated strain HB-1T, from the domain Archaea was isolated from groundwater sampled from a subsurface Miocene formation located in Horonobe, Hokkaido, Japan. The strain grew on methanol, dimethylamine, trimethylamine, dimethylsulfide and acetate but not on monomethylamine, H2/CO2, formate, 2-propanol, 2-butanol or cyclopentanol. Cells were Gram-reaction-negative, non-motile, irregular cocci that were 1.4–2.9 µm in diameter and occurred singly or in pairs. The strain grew at 20–42 °C (optimum 37 °C), at pH 6.0–7.75 (optimum pH 7.0–7.25) and in 0–0.35 M NaCl (optimum 0.1 M). The G+C content of the genomic DNA was 41.4 mol%. 16S rRNA gene sequencing revealed that the strain was a member of the genus Methanosarcina but that it clearly differed from all recognized species of this genus (93.1–97.9 % sequence similarity). The phenotypic and phylogenetic features of strain HB-1T indicate that it represents a novel species of the genus Methanosarcina, for which the name Methanosarcina horonobensis sp. nov. is proposed. The type strain is HB-1T ( = DSM 21571T  = JCM 15518T  = NBRC 102577T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1725-1728 ◽  
Author(s):  
Geert Huys ◽  
Margo Cnockaert ◽  
Sharon L. Abbott ◽  
J. Michael Janda ◽  
Peter Vandamme

It has been shown previously, based largely on DNA–DNA hybridizations and partial 16S rRNA gene sequencing, that Hafnia alvei is genotypically heterogeneous and consists of at least two DNA hybridization groups (HGs). In the present study, the taxonomic status of H. alvei HGs 1 and 2 was reassessed. A panel of 24 reference strains and isolates previously assigned to one of the two HGs in H. alvei was subjected to (GTG)5-PCR fingerprinting; this resulted in the delineation of two (GTG)5-PCR clusters in perfect accordance with the respective HG designations. Based on full 16S rRNA gene sequencing of a selection of reference strains, H. alvei HGs 1 and 2 showed internal sequence similarities of 99.8 and 99.5 %, respectively. Between the two groups, sequence similarities ranged from 98.8 to 99.1 %. Mean DNA–DNA hybridization values of 74.7–99.9 % were obtained within each of the two HGs, whereas cross-hybridizations between members of H. alvei HG 1 (including ATCC 13337T) and HG 2 revealed only 32.7–48.7 % DNA–DNA hybridization. Previously published and new phenotypic data revealed that a combination of malonate assimilation and β-glucosidase activity enabled correct assignment of Hafnia isolates to one of the two HGs. Collectively, taxonomic data from this study confirm that H. alvei comprises at least two taxa at the species level, of which HG 1 corresponds to H. alvei sensu stricto because it includes the type strain ATCC 13337T. Strains formerly classified as members of H. alvei HG 2 represent a novel species, for which the name Hafnia paralvei sp. nov. is proposed; ATCC 29927T (=CDC 4510-73T =LMG 24706T), the former reference strain of H. alvei HG 2, is designated the type strain.


2005 ◽  
Vol 55 (1) ◽  
pp. 405-408 ◽  
Author(s):  
Raúl Rivas ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
Encarna Velázquez

During a search for xylan-degrading micro-organisms, a sporulating bacterium was recovered from xylan-containing agar plates exposed to air in a research laboratory (Salamanca University, Spain). The airborne isolate (designated strain XIL14T) was identified by 16S rRNA gene sequencing as representing a Paenibacillus species most closely related to Paenibacillus illinoisensis JCM 9907T (99·3 % sequence similarity) and Paenibacillus pabuli DSM 3036T (98 % sequence similarity). Phenotypic, chemotaxonomic and DNA–DNA hybridization data indicated that the isolate belongs to a novel species of the genus Paenibacillus. Cells of strain XIL14T were motile, sporulating, rod-shaped, Gram-positive and facultatively anaerobic. The predominant cellular fatty acids were anteiso-C15 : 0 and C16 : 0. The DNA G+C content of strain XIL14T was 50·5 mol%. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. Catalase was positive and oxidase was negative. The airborne isolate produced a variety of hydrolytic enzymes, including xylanases, amylases, gelatinase and β-galactosidase. DNA–DNA hybridization levels between strain XIL14T and P. illinoisensis DSM 11733T and P. pabuli DSM 3036T were 43·3 and 36·3 %, respectively. According to the data obtained, strain XIL14T is considered to represent a novel species for which the name Paenibacillus xylanilyticus sp. nov. is proposed (=LMG 21957T=CECT 5839T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2170-2175 ◽  
Author(s):  
Kwang Kyu Kim ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
Hee-Mock Oh ◽  
Song-Gun Kim

The alphaproteobacterial strains GRP21T and PH34, which were isolated from coastal sediment of the East Sea, Korea, were subjected to a polyphasic taxonomic investigation. The strains were Gram-negative, non-motile, non-spore-forming, oval-shaped rods that produced creamy-white colonies on tryptic soy agar, required NaCl for growth, contained Q-10 as the predominant ubiquinone, contained 16 : 0, 18 : 1ω7c and 19 : 0 cyclo ω8c as major fatty acids and had polar lipid profiles consisting of phosphatidylcholine, phosphatidylglycerol, an unknown aminolipid, an unknown phospholipid and three unknown lipids. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that the strains were most closely related to Donghicola eburneus KCTC 12735T, with 94.5 % sequence similarity, but formed a separate lineage within the family Rhodobacteraceae. The combined genotypic and phenotypic data supported the conclusion that the strains represent a novel genus and species, for which the name Pontibaca methylaminivorans gen. nov., sp. nov. is proposed. The type strain of Pontibaca methylaminivorans is GRP21T (=KCTC 22497T =DSM 21219T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1717-1721 ◽  
Author(s):  
M. Grazia Fortina ◽  
G. Ricci ◽  
D. Mora ◽  
P. L. Manachini

The taxonomic positions of seven atypical Enterococcus strains, isolated from artisanal Italian cheeses, were investigated in a polyphasic study. By using 16S rRNA gene sequencing, DNA–DNA hybridization and intergenic transcribed spacer analysis, as well as by examining the phenotypic properties, the novel isolates were shown to constitute a novel enterococcal species. Their closest relatives are Enterococcus sulfureus and Enterococcus saccharolyticus, having a 16S rRNA gene sequence similarity of 96·7 %. This group of strains can be easily differentiated from the other Enterococcus species by DNA–DNA hybridization and by their phenotypic characteristics: the strains do not grow in 6·5 % NaCl, and they do not produce acid from l-arabinose, melezitose, melibiose, raffinose or ribose. The name Enterococcus italicus sp. nov. is proposed for this species, with strain DSM 15952T (=LMG 22039T) as the type strain.


2005 ◽  
Vol 55 (3) ◽  
pp. 1305-1309 ◽  
Author(s):  
Raúl Rivas ◽  
Carmen Gutiérrez ◽  
Adriana Abril ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
...  

Two sporulating bacterial strains designated CECAP06T and CECAP16 were isolated from the rhizosphere of the legume Cicer arietinum in Argentina. Almost-complete 16S rRNA gene sequences identified the isolates as a Paenibacillus species. It was most closely related to Paenibacillus cineris LMG 18439T (99·6 % sequence similarity), Paenibacillus favisporus LMG 20987T (99·4 % sequence similarity) and Paenibacillus azoreducens DSM 13822T (97·7 % sequence similarity). The cells of this novel species were motile, sporulating, rod-shaped, Gram-positive and strictly aerobic. The predominant fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. The DNA G+C content of strains CECAP06T and CECAP16 was 51·3 and 50·9 mol%, respectively. Growth was observed from many carbohydrates, but gas production was not observed from glucose. Catalase and oxidase activities were present. The isolates produced β-galactosidase and hydrolysed aesculin. Gelatinase, caseinase and urease were not produced. The results of DNA–DNA hybridization showed that the strains from this study constitute a novel species of the genus Paenibacillus, for which the name Paenibacillus rhizosphaerae sp. nov. is proposed. The type strain is CECAP06T (=LMG 21955T=CECT 5831T).


Sign in / Sign up

Export Citation Format

Share Document